
Sophisticated Sensing on Transient Power

Josiah Hester
School of Computing
Clemson University

jhester@clemson.edu

ABSTRACT
For decades sensing systems have relied solely on battery power
for execution of all activities; this has caused the focus of much
research to go towards reducing energy consumption to extend the
usable lifetime of a sensor. Recently, a new class of batteryless
devices has arisen that promise operation in perpetuity, but often
at the cost of reliability, and complexity. Programming, profiling,
debugging, and building these applications is a significant challenge;
designers must often be capable of implementing custom hardware
to manage energy, while writing code in an environment that does
not guarantee task completion. In this abstract, we motivate bat-
teryless sensing, examine the state of the art, and propose a novel
approach to programming, profiling, debugging, and building, tiny,
batteryless sensors.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Micro-
processor/microcomputer applications; D.3.2 [Programming Lan-
guages]: Language Classifications—Specialized application lan-
guages

General Terms
Measurement, Experimentation, Performance, Reliability

Keywords
Energy Harvesting; Capacitor; Federated Energy; Ekho; UFoP;
Embedded System

1. INTRODUCTION
Wireless sensors use of batteries as the primary energy source

has hampered their ability to be deployed for long periods of time.
Batteries only have a usable lifetime of a few years if used carefully.
Additionally batteries are expensive, large, and pose environmental
risks when disposed—often requiring human intervention or main-
tenance. Because of the high costs associated with batteries, a new
class of sensors emerged that instead rely on energy harvesting for

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the Owner/Author(s). Copyright is held by the
owner/author(s).
SenSys’15, November 1–4, 2015, Seoul, South Korea..
ACM 978-1-4503-3631-4/15/11.
DOI: http://dx.doi.org/10.1145/2809695.2822521 .

all computation tasks. By replacing batteries with capacitors, these
devices reduce environmental risk, can be made smaller and cheaper,
and can be deployed for much longer periods of time. When sensing
deployments can last on the order of decades instead of months,
very long term studies of infrastructure, wildlife, and human factors
become realistic.

Wireless sensing systems generally operate under the assumption
that power is a stable, if limited, resource. This assumption has
been challenged by batteryless platforms such as computational
RFID, that are powered off small capacitors and rely on energy
harvested from an RFID Reader. These devices are often only
able to store enough energy for a few hundred milliseconds of
work, losing memory and time when energy is not sufficient to
turn on the device. Devices often operate blind, reconstructing
progress from checkpoints left by a possibly long dead version of
themselves. Long running tasks must be executed piecemeal across
reboots using checkpointing and careful scheduling. Even with
careful checkpointing and scheduling, sensing outcomes are never
guaranteed.

Building applications resilient to inconsistent power is challeng-
ing because system designers lack the debugging tools, language
support, and hardware platforms. Because of this, batteryless sensor
deployments have been limited to simple programs at small scale.
To move batteryless sensors beyond computational RFID and into
the mainstream of traditional sensing, the developmental burden of
batteryless applications must be eased.

The central thesis of this research is that batteryless devices can
support long-running, sophisticated sensing applications. To test
this thesis we envision building a sensing platform that transparently
manages the temporal, computational, and consistency difficulties
caused by flaky power, specifically we look at the following:

• Hardware solutions to managing energy storage and timekeep-
ing between power failures (Section 2)

• Language and runtime support for computing on batteryless
devices (Section 3)

• Tools which enable repeatable experimentation of batteryless
devices (Section 4)

Innovating in these three areas will enable application developers
to quickly and confidently prototype, test, and deploy perpetual
sensing systems.

2. HARDWARE
Software solutions to managing energy and keeping time on tran-

sient power fall far short of enabling sophisticated applications.
Microcontrollers draw too much energy to be able to handle energy



management tasks. Additionally, they cold boot too slow to keep
accurate time throughout power failures. It is imperative that certain
low level tasks are handled by the hardware layer to reduce the
energy and time overhead as much as possible. In order to simplify
development of batteryless sensing applications, we have relegated
energy management, and timekeeping to the hardware layer.

Federating Energy: In most sensing systems, energy originates
from a single energy store (a battery or super capacitor). This con-
vention causes task and component coupling for capacitor based de-
vices. This happens for the simple reasons that charging a capacitor
large enough to support sensing, computation, and communication,
takes longer than charging a smaller capacitor that supports just one
of those functions. We have proposed UFoP (the United Federation
of Peripherals) [2] as a solution to this problem; UFoP federates a
device’s total energy storage into multiple capacitors, each dedicated
to a specific component or task.

Batteryless Timekeeping: One of the greatest challenges to bat-
teryless computing is keeping track of time across power failures.
When energy runs out, the microcontroller, volatile RAM, and all
clocks are reset. This means that any previous timestamps have
no meaning, since the local clock will start back at zero. Previous
approaches to keeping time [3] used the data remanence proper-
ties of SRAM to measure the time since a power loss. We can
extend this approach using a dedicated hardware component and an
ADC for precise measurement—giving us greater configurability
and precision.

3. LANGUAGE
Without language and runtime support for batteryless sensing,

the hardware techniques previously described will have limited use-
fulness. Currently applications for batteryless sensing are highly
constrained—all tasks must happen in one power cycle. This means
that tasks must be simple, execute quickly, and have no dependen-
cies, otherwise the program may not complete before a power loss.
Previous work has focused on checkpointing, energy aware sensing,
and scheduling; however existing approaches have too high of an
overhead, or do not consider how the loss of timekeeping effects
the duty cycle. We propose a language and runtime system for
batteryless sensing devices that addresses these core problems. This
system will be designed to track sensor data through power failures
while also enabling task dependencies, and task scheduling.

Track sensor data through power failures: Application develop-
ers have no way of knowing how old data is that was gathered before
a power failure, meaning that passing that data on could be a waste
of energy and time. Using the hardware support for timekeeping
described in Section 2, checkpointing, and application hints sup-
plied by developers, our runtime can dynamically decide whether to
use, or replace existing senor data gathered in a previous duty cycle.
These automatic runtime decisions can enabling intelligent, long
term gathering of sensor data despite flaky power.

Enable task dependencies, and task scheduling: Our language
will enable developers to describe tasks, and their dependencies, so
that sophisticated duty cycles can be created. Our runtime will take
these tasks, with their real-time constraints, and attempt to make
progress on them when energy is available. Application developers
will not need to trim requirements so that everything can be executed
in one power cycle. Instead, our language and runtime will enable
longer, dependent tasks to run to completion, even if they span
numerous power failures.

We envision application developers programming batteryless de-
vices by defining a graph of tasks, connected by edges that define

real time constraints, flow controls, and policy information. By
separating the scheduling of tasks from the implementation details
of the task, developers are free to focus on sensing outcomes and
goals.

4. TOOLS
Debugging and verifying functionality in the face of flaky power

presents unique challenges. Application developers need debugging
tools to make the idea of perpetual batteryless sensing a reality. To
address this challenge we created Ekho [1], a tool that records, and
emulates energy harvesting environments. Harvested environmental
energy is generally variable, scarce, and unpredictable. Using Ekho,
developers can record these unpredictable Solar, RF, Kinetic, or
Thermal environments, and replay these environments later. This
allows developers to compare different hardware configurations,
duty-cycles, sensor setups, algorithms, and much more in a realistic
energy environment, pre-deployment. Using a mobile version of
Ekho we developed, application designers and domain scientists can
capture energy environments in difficult to reach places outside the
lab, allowing for more realistic testing before a deployment.

Ekho allows us to test repeatably, and conduct rigorous experi-
mentation with batteryless devices that was previously impossible.
However, Ekho cannot guarantee that devices will work in deploy-
ment, or give line-by-line information on program and execution
state. We propose a suite of extensions to Ekho that will give devel-
opers more confidence in deploying their batteryless sensors. These
tools are centered around the idea of energy aware test driven devel-
opment; specifically we look to enable breakpoint and trace based
step debugging, and lay the ground work for unit testing, and code
coverage metrics, for batteryless devices.

5. CONCLUSIONS
Batteryless, perpetual sensing presents unique challenges. Deal-

ing with systems that may reboot 10-20 times a second is a difficult
task. However, these devices promise to enable new realms of sens-
ing in wildlife tracking, infrastructure, smart cities and buildings,
and wearables. Before that can happen, new techniques in handling
flaky power must be imagined. The central thesis of this research
is that batteryless devices can support long running, sophisticated
sensing applications. By constructing a specialized hardware plat-
form, defining a language and runtime, and creating a set of tools
for energy aware debugging, we can enable developers to manage
the temporal, computational, and consistency difficulties caused by
flaky power.

6. REFERENCES
[1] J. Hester, T. Scott, and J. Sorber. Ekho: Realistic and

Repeatable Experimentation for Tiny Energy-Harvesting
Sensors. In Proc. 12th ACM Conf. Embedded Network Sensor
Systems (SenSys’14), pages 1–15, Memphis, TN, USA, Nov.
2014. ACM.

[2] J. Hester, L. Sitanayah, and J. Sorber. Tragedy of the Coulombs:
Federating Energy Storage for Tiny, Intermittently-Powered
Sensors. In Proc. 13th ACM Conf. Embedded Network Sensor
Systems (SenSys’15), Seoul, Korea, Nov. 2015. ACM.

[3] A. Rahmati, M. Salajegheh, D. E. Holcomb, J. Sorber, W. P.
Burleson, and K. Fu. Tardis: Time and remanence decay in
sram to implement secure protocols on embedded devices
without clocks. In USENIX Security Symposium, pages
221–236, 2012.


