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Abstract
Harvesting energy from the environment makes it possi-

ble to deploy tiny sensors for long periods of time, with little
or no required maintenance; however, this free energy makes
testing and experimentation difficult. Environmental energy
sources vary widely and are often difficult both to predict
and to reproduce in the lab during testing. These variations
are also behavior dependent—a factor that leaves application
engineers unable to make even simple comparisons between
algorithms or hardware configurations, using traditional test-
ing approaches.

In this paper, we describe the design and evaluation of
Ekho, an emulator capable of recording energy harvesting
conditions and accurately recreating those conditions in the
lab. This makes it possible to conduct realistic and repeat-
able experiments involving energy harvesting devices. Ekho
is a general-purpose tool that supports a wide range of har-
vesting technologies. We demonstrate, using a working pro-
totype, that Ekho is capable of reproducing both solar and
RF energy harvesting environments accurately and consis-
tently. Our results show that Ekho can recreate harvesting-
dependent program behaviors by emulating energy harvest-
ing conditions accurately to within 77.4 µA for solar envi-
ronments, and can emulate RF energy harvesting conditions
significantly more consistently than a programmable RF har-
vesting environment.
Categories and Subject Descriptors

C.3 [Special-Purpose and Application-Based Sys-
tems]: Microprocessor/microcomputer applications
General Terms

Measurement, Experimentation, Performance, Instru-
ment
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Energy Harvesting, Emulation, I–V curves, RFID
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1 Introduction
Harvested energy is vital to the success of many mobile

sensing applications. No longer limited primarily by battery
capacities, smaller sensing devices can be deployed in re-
mote or otherwise challenging environments for much longer
periods of time, by gathering solar [14, 16], kinetic [17], or
RF energy [3, 21]—devices can even harvest energy from
other devices [15]. Regardless of the source, this freely-
available energy allows low power sensing devices to operate
in a truly untethered fashion, collecting valuable data perpet-
ually, while requiring little or no maintenance.

However, hardware and software solutions for energy har-
vesting sensing devices with limited energy storage are diffi-
cult to design, debug, and especially to evaluate.Harvested
energy varies and energy storage constraints continue to
tighten, in order to accommodate smaller mobile form fac-
tors. The consequence is that, in addition to the more tra-
ditional challenges faced by mobile devices (like uncertain
network connectivity), it is often difficult for system design-
ers to predict how their devices will behave at runtime. Re-
liably comparing different algorithms, approaches, or con-
figurations is often impractical or extremely labor-intensive.
These challenges are primarily the result of two key charac-
teristics of energy harvesting systems: 1) energy harvesting
is erratic and unpredictable, and 2) the amount of energy
harvested depends not only on environmental conditions, but
also on the device’s behavior at runtime.

The combination of a behavior-dependent energy supply
and a high degree of runtime volatility makes repeatable
experimentation impractical, using traditional testing strate-
gies. Two test runs with the same hardware and software may
result in dramatically different results, due to differences in
energy harvesting conditions. Two runs with different soft-
ware or hardware configurations may produce dramatically
different results under the same harvesting conditions, as-
suming that harvesting conditions can be replicated. Run-
time conditions are often vastly different from in-lab con-
ditions, and may be difficult to replicate during testing. In
order to compare different algorithms or different hardware
configurations, a system designer must currently either run a
large number (hundreds or thousands) of tests under realis-
tic runtime conditions and compare results stochastically (a
labor-intensive and imprecise approach), or control energy
harvesting conditions in simulation.

Simulators have been developed that predict the power



consumption [5, 7, 20, 21, 23] and even the energy harvest-
ing [9, 21] behaviors of sensor devices. Unfortunately, most
ignore the impact of device behavior on energy harvesting,
and simulators must depend entirely on an accurate model
of the test device’s hardware characteristics. As device hard-
ware evolves or when a designer wants to try out a different
hardware component (e.g., a new sensor, actuator, or proces-
sor), the simulation software must be updated—often involv-
ing a significant amount of in-lab measurement and testing.

This paper explores a third option, emulation. Instead
of depending on software models of energy harvesting and
consumption, an energy harvesting emulator, records en-
ergy harvesting conditions and then accurately reproduces
the recorded conditions (in the form of physical “harvested”
power) to a real test device running in the lab. This ap-
proach provides system designers with a realistic and repeat-
able evaluation technique, without sacrificing flexibility—
modifying the hardware and software on the test device does
not require any changes to the emulator.

In this paper, we describe the design, implementation, and
evaluation of Ekho, a tool that records and emulates energy
harvesting conditions, and is generally applicable to a wide
range of harvesting technologies. Ekho uses a novel method
to explore and record an energy harvesting environment by
modulating the load using a precisely controlled digital po-
tentiometer. This energy harvesting environment (Solar, RF)
is processed and stored to be later replayed through a custom
analog front-end which serves as a current source. We eval-
uate Ekho’s ability to replicate energy harvesting conditions
both accurately and consistently. In our evaluation we found
Ekho is consistent within 68.7 µA1 from test run to test run,
emulating recorded solar harvesting environments to mote-
class devices running a variety of test programs. Ekho repro-
duces a recorded solar trace with a mean error of less than
77.4 µA from the recorded surface. We also found that Ekho
was able to record RF energy harvesting environments and
replay them with high fidelity, and low error rates for most
transmit powers.

2 Harvesting Energy. . . Again
Ambient energy, harvested from the environment, is key

to the success of any sensing and pervasive computing ap-
plication that requires small devices to operate maintenance-
free over long periods of time. Energy in its many forms
(solar, RF, mechanical, thermal, etc) can be converted into
electrical energy that can be stored in batteries or capacitors
and used to power the device’s processor, sensors, and other
components for decades of useful operation.

Unfortunately, designing devices that effectively use this
never-ending supply of free energy is challenging. Unlike
traditional battery powered sensors (which duty cycle to
prolong lifetime), energy harvesting devices must work op-
portunistically; too much or too little energy is equally in-
efficient and wasteful. Greedily using energy can restrict
functionality, while under utilization of harvested energy is
wasteful in terms of computation that could have been per-
formed.
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Figure 1. Harvested power is shown for two TI EZ430-
RF2500 target boards running different programs that
both write to flash in different ways—one writes as fast
as possible if there is any power available, the other
adapts so it can write even when harvestable energy is
scarce—under the same solar energy harvesting condi-
tions. Differences in power consumption result in differ-
ent amounts of harvested power.

Additionally, nearly all environmental energy sources
vary widely and unpredictably at runtime, and as new appli-
cations require smaller form factors and lower energy stor-
age capacities [4], power supply volatility increasingly influ-
ences and defines device behavior. Devices, like computa-
tional RFIDs (CRFID) [3, 22, 26], that replace batteries with
small capacitors and store only enough energy for, at most, a
few seconds of operation are especially susceptible, and may
see their supply voltage increase threefold or fall to zero in
seconds. Power supply fluctuations affect a device’s runtime
behavior in ways that are often difficult to predict or repro-
duce in the lab during testing.

Matters are complicated further by the fact that the energy
harvested by each device depends not only on environmental
conditions, but also on the device’s supply voltage at run-
time. The relationship between supply voltage and charge
current can be characterized by an I–V curve, a function that
describes how harvesting current (I) changes, with respect to
the device’s supply voltage (V). Different programs (loads)
will occupy different areas of the I–V-curve as shown by
Figure 3.

Figure 2 shows six (6) example I–V curves, two produced
by a solar panel under high and low light conditions, two pro-
duced by a Peltier generator—which converts thermal differ-
entials into electrical current—under 5 �C and 10 �C thermal
differentials, and two produced by RF energy from a reader
at +32.5 dBm and +27.75 dBm. In all three cases, environ-
mental changes alter the harvester’s I–V curve. In addition,
each harvester produces its own distinct “family” of curves,
with a common characteristic shape.
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Figure 2. Six I–V curves are shown, produced by three
different energy harvesters—a solar panel, a Peltier gen-
erator, and an RF Reader—each under two (2) different
energy harvesting conditions. Each harvester produces
its own “family” of curves, with a common characteristic
shape. Each of the above I–V curves were captured with
the recording feature of Ekho. Note that the Peltier curve
has been scaled 17x for purposes of illustration.

At runtime, an energy harvester’s I–V curves impact pro-
gram behaviors and experimental outcomes. For example,
two algorithms that draw different amounts of current will
deplete their capacitors at differing rates, resulting in differ-
ent supply voltages, and, consequently, different amounts of
harvested power (P = IV ).

Figure 1 illustrates this scenario by showing the amount
of power harvested by two TI EZ430-RF2500 devices run-
ning different programs under the same solar harvesting
conditions. Both periodically read data from an on-board
temperature sensor, however the Adaptive program modu-
lates its wait time depending on the voltage so it can sense
when energy is scarce, while the Static program senses and
writes whenever it is able. Under the test conditions, Adap-
tive stayed near the high energy knee of the I–V-curve (see
Figure 3), maximizing on available energy by watching its
supply voltage, while the Static program harvested signifi-
cantly less energy by being greedy. The maximum power
point (MPP) is also shown to demonstrate the amount of
power that could potentially have been harvested by a device
with the right supply voltage.

Consequently, any attempt to predict how a low-power en-
ergy harvesting device will behave in the wild, must take into
account the harvester’s I–V characteristics and the resulting
program variation. There are two common methods to doing
this; (1) replaying a harvested power trace gathered from a
device, and (2) using a programmable energy environment
such as a light-box.

Replaying Power: One approach to making energy harvest-
ing reproducible is to measure the harvested power as the
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Figure 3. This figure shows how program behaviors in-
fluence energy harvesting performance. Four (4) pro-
grams’ harvested currents, measured over a 20 s period
of time, are shown with respect to their supply volt-
age, while connected to a programmable solar environ-
ment (see Section 4) generating a single I–V curve (shown
in black). Points represent an average of many samples
(many points are not contained in shaded regions), and
the histogram’s along the bottom show the sample den-
sity at each point. Due to differences in behavior (power
consumption), each example program occupies a differ-
ent section of the I–V curve. These differences result in
signifiant variations in harvested power.

device executes, and then replay the collected power trace.
This approach has been used in other harvester-powered mo-
bile systems [24], and our early efforts focused on replaying
power traces.

Replaying a power trace is attractive as a predictive tech-
nique since designing the hardware is simple and straight-
forward, and provides a reasonably accurate solution for de-
vices with a constant supply voltage—like those with large
batteries, which typically vary by less than half a volt when
between 15% and 85% of a full charge. When the battery is
nearly full or empty, simply replaying a power trace to simu-
late this will over or underestimate the energy that would be
harvested in an actual deployment scenario.

While replaying power will work most of the time for de-
vices with large batteries, devices that store their energy pri-
marily in small batteries or capacitors have much less stable
supply voltages that explore much more of the energy har-
vester’s I–V curve, at runtime. Figure 4 illustrates the I–V
characteristics that are produced by recording the power har-
vested at a single point and replaying that power during ex-
periments. Replaying constant power results in an effective
I–V curve, defined by I = P

V , where P is the power being re-
played. The figure shows three such I–V curves that could
be inferred from the same solar I–V curve. In all cases, the
“constant power” curves approximate the real energy har-
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Figure 4. Shown is a single I–V-curve, and the conse-
quences of choosing constant power to represent it. De-
pending on the load, the generated P-curves from the
power trace can cause unrealistic changes in the pro-
grams actual harvested energy. As shown, emulating
constant power is a poor replacement for emulating the
actual I–V-curve.

vesting characteristics in only a small part of their range. In
a later section, we compare the results of emulating power
with different training sets to Ekho, and the light-box men-
tioned below.

Programmable Energy Environments:
Programmable energy environments offer a somewhat

more comprehensive effort at reproducing energy conditions
than simple power replay. These environments make an ef-
fort to isolate an energy source, such as solar, heat, or vi-
brations, and create a repeatable environment to provide en-
ergy to a system [2]. The shortfalls of these devices come
in several key areas. Often, construction of these devices re-
quires significant time and expertise to create an accurate re-
play environment. These devices also tend to possess many
points of failure or errata introduction. These analog solu-
tions to programmable energy environments are much better
than many naive approaches that solely simulate power re-
play.

In developing Ekho, we made extensive use of two such
environments, dubbed the “light-box” and the “RF-box”.
The light-box consists of a vehicle headlamp whose out-
put is controlled via microcontroller and offers the ability
to provide a controlled amount of light directly to a solar
panel with minimal influence from outside sources. The en-
ergy produced by the light-box can then be used to power
a low energy system and produce reasonably repeatable re-
sults, however it is not perfect as Figure 5 shows. The RF-
box is constructed so as to isolate the interior from wireless
interference; which can cause variation in harvesting current.
Inside the RF-box is a programmatically controlled anten-
nae that can power small CRFID tags such as the Umich

Lightbox Output

M
ea

n 
Va

ria
tio

n 
(µ

A
)

0
20

40
60

80
10

0

0 20% 40% 60% 80% 100%

Figure 5. The light-box mean variation between runs in-
creases with light intensity for static loads. The light-
box, unlike Ekho is susceptible to environmental changes
and care must be taken to control those. Temperature
changes after long use are one such factor that affects re-
peatability.

Moo. By modulating the transmit power different harvest-
ing conditions can be created. Other programmable energy
environments take similar steps to isolate sources such as Ki-
netic energy harvesting with controllable shake tables or heat
energy harvesting via Peltier generators between controlled
temperature plates.

3 Ekho
The Ekho emulator is designed to capture the physical

characteristics of an energy harvesting environment, and
recreate those environmental conditions in order to enable
repeatable and realistic in-lab testing. Ekho does not emulate
program behaviors, but captures features of the energy envi-
ronment that allow testing of different program behaviors in
a realistic way. Rather than focus on supporting a specific
harvesting technology, our design of Ekho is focused on pro-
viding a generally applicable tool that supports a wide range
of energy sources, while providing users with flexibility, ac-
curacy, and consistency.

Generality: In Ekho, energy harvesting conditions are rep-
resented as I–V curves—an abstraction that, as discussed
in Section 2, can be used to characterize any common en-
ergy harvesting technology. Changes in harvesting condi-
tions over time are represented by combining multiple I–V
curves into I–V surfaces. This generality frees the experi-
menter from designing expensive custom hardware such as
a light-box or Faraday cage to test devices before deploy-
ment. Ekho uses a novel method to explore and record these
I–V-surfaces by quickly, and randomly modulating the load
using a precisely controlled digital potentiometer. This al-
lows Ekho to rapidly explore any I–V-surface, including RF,
with minimal changes in experimental setup.
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Figure 6. Ekho consists of three interdependent modules:
a surface manager that stores I–V surfaces and manages
the high-level recording and emulation logic for the sys-
tem; a low-latency controller that sequentially emulates
the I–V curves that correspond to each single point in
time during an emulated surface; and a front-end module
that facilitates controllable current emulation and pro-
vides signal conditioning that is needed for taking accu-
rate current and voltage measurements.

Flexibility: A key focus of our design is to allow appli-
cation designers to effortlessly compare different software
and hardware options. Ekho achieves this by mimicking
the physics of an energy-harvester, providing realistic and
repeatable power to real test devices. Using this approach,
trying out a new sensor, energy harvester, scheduling algo-
rithm, or even a new processor, requires no changes to the
emulator, no profiling or modeling. The user simply makes
the desired change and continues testing.

Accuracy: An energy harvesting emulator is only as use-
ful as it is able to accurately recreate energy harvesting con-
ditions. At runtime, devices may experience a wide range
of rapidly-changing harvesting conditions, and Ekho is de-
signed to accurately estimate I–V surfaces of varying shapes
and magnitudes, and recreate the recorded conditions with
sufficient accuracy to mimic the energy fluctuations and en-
ergy patterns that the device will confront in the wild.

Consistency: Perhaps the most important goal for Ekho is
consistency. No two recorded traces of energy harvesting
conditions will be identical, and test engineers may often
be willing to tolerate emulations that are similar, but not
identical, to those recorded in the wild. In contrast, exper-
iments that aim at comparing different algorithms or hard-
ware choices require that test runs be consistent. Inconsis-
tent emulation yields results that are not reproducible and
difficult to interpret. Ekho offers favorable accuracy behav-
iorally and physically compared to other controlled energy
harvesting environments but excels in reproducing energy
conditions consistently.

3.1 System Architecture
In order to achieve these goals, we have designed a sys-

tem architecture, shown in Figure 6, which consists of three
interdependent modules: a surface manager that stores I–V
surfaces and manages the high-level recording and emula-
tion logic for the system; a low-latency I–V curve controller
that sequentially emulates the I–V curves that correspond to
each single point in time during an emulated surface; and an
analog front-end module that facilitates controllable current
emulation and provides signal conditioning that is needed
for taking accurate current and voltage measurements, espe-
cially during periods when harvested energy is scarce.

Ekho’s surface manager controls both the recording and
emulation of energy harvesting conditions. This includes re-
ceiving current and voltage measurements from the I–V Con-
troller during recording, estimating I–V curves from the re-
ceived measurements, storing I–V surfaces, and sending I–V
curves one-by-one to the I–V curve controller during emula-
tion. The storage and computational requirements for these
activities, fit comfortably within the capabilities of the cur-
rent generation of laptop and desktop computers.

In order to accurately emulate I–V curves received from
the surface manager, the I–V curve controller must be able
to quickly gather current and voltage measurements and re-
spond to those changes appropriately (within a few µs). This
requirement is most easily satisfied by a processor with inte-
grated analog-to-digital (ADC) and digital-to-analog (DAC)
capabilities, a feature that is rarely found in today’s high-
speed processors, but which are provided by some higher-
speed microcontrollers, like Atmel’s AVR XMEGA line of
controllers [6], which we use in our prototype, described in
Section 4.

The I–V curve controller relies on the third module, an
analog front-end, to provide the amplification and other sig-
nal conditioning needed for accurate I–V curve emulation
and measurement. When capturing energy harvesting con-
ditions, this circuit is placed between the harvester and test
load. During emulation, the front-end takes on the role of en-
ergy harvester, providing the device under test with a current
supply that mimics the energy source being emulated.

The following sections describe how these modules work
together, in two different operating modes, to record and em-
ulate harvesting conditions.

3.2 Recording I–V Surfaces
Ekho captures the energy harvesting conditions by mea-

suring them directly. Electrical current is measured by the
front-end as it flows from the energy harvester into the test
device’s storage capacitor. Current is measured by observing
the amplified voltage drop across a low-tolerance sense resis-
tor (a standard technique). The test device’s supply voltage
is also measured. These current-voltage (I–V) measurements
are converted from analog voltages to digital values by the
I–V curve controller as rapidly as possible and passed along
to the surface manager for post-processing.

This series of recorded I–V pairs represent a single path
across the three-dimensional surface that represents the har-
vesting conditions during the trace; the surface manager’s
challenge is to estimate the entire surface from this single
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Figure 7. This figure shows recorded I–V measure-
ments, as produced by both the Ekho smart load device
and a typical mote-class sensor device. By intentionally
increasing the power supply volatility, the smart load
provides much better coverage of the I–V curve being
recorded, which improves Ekho’s recording accuracy.

path. Each recorded I–V pair captures one point on the I–
V curve that represents harvesting conditions at the time it
was captured. When considered alone, each point could have
been produced by an infinite number of different I–V curves;
however, a series of I–V measurements can be used to in-
fer the current I–V curve’s shape, assuming 1) that the mea-
surements are gathered quickly before the I–V curve changes
too much, and 2) that the measurements adequately span the
I–V curve’s voltage range. Taking measurements rapidly
(>1 million samples/second) is straightforward. Inducing
enough supply voltage volatility to quickly and fully char-
acterize the I–V curve at each point in time, requires more
care. A key contribution of Ekho is it’s novel method to in-
duce supply voltage volatility.

3.2.1 Inducing Supply Voltage Volatility
At runtime, the power consumption of a typical test de-

vice (or test load), like a CRFID or mote-class sensor, does
not often change rapidly enough or significantly enough to
explore the entire I–V curve. This is illustrated in Figure 7,
which shows two sets of 6,000 I–V pairs collected by Ekho
over a period of 30 ms, under similar solar harvesting condi-
tions, while using two different test loads: an off-the-shelf TI
EZ430-RF2500 mote [11], and a custom smart test load that
we have designed specifically for inducing voltage changes
in order to assist with Ekho’s recording mode.

The custom “smart” load is a 100 kW digital potentiome-
ter controlled by an Arduino which rapidly alters its power
consumption, in order to induce large fluctuations in sup-
ply voltage for more accurate recording. The Arduino con-
trols the potentiometer and makes it cycle through a predeter-
mined number of resistance settings for a given time delay.
These changes produce a wide range of different load cur-

rents that explore different parts of the I–V curve. As long as
the cycle frequency is high enough, and the upper and lower
bound of the potentiometer’s resistance settings can exercise
the extreme ends of the curve, the shape of any instantaneous
I–V curve can be gathered. In our experiments we have found
that a 100 kW potentiometer provides a large enough range.
For custom “smart” load “cycle frequency” (the number of
times a second the smart load cycles through all its resistance
settings), we found that 100Hz can capture solar I–V curves,
and 1000Hz and above is sufficient to approximate an RF
I–V surface

As shown in Figure 7, when using the custom load, the
measurements are spread evenly across the I–V curve, the
smart load effectively explores the entire I–V-curve, while
the mote measures only a small part of the curve.
3.2.2 Surface Construction

Once these measurements have been captured, the sur-
face manager uses a curve-fitting algorithm to estimate the
shape of the I–V curve that most closely fits each window of
data, and the series of inferred I–V curves make up the I–V
surface that is stored for later use during testing. A variety
of curve-fitting algorithms exist, which could be used. We
use the polynomial fitting algorithm provided by the GNU
Scientific Library (GSL), and have found it to work well
in practice, both in terms of accuracy and efficiency. The
size of each window is configurable (and is closely related
to the custom load cycle frequency), and represents a trade-
off between temporal accuracy and I–V curve accuracy. If
the window is too small, containing too few points with poor
coverage, the estimated I–V curves may be inaccurate. If
the window is too large, then short-term changes in the I–V
surface could be effectively filtered out of the captured rep-
resentation, decreasing the temporal accuracy of the surface;
however this is harvester dependent. Trading temporal accu-
racy for a larger window (and therefore I–V curve accuracy)
will not influence the final behaviors of most programs run-
ning on slow changing solar surfaces where curves switch at
less than 100 Hz. However, for RF surfaces this can pose a
much larger problem as curves can change upwards of one
thousand times a second.
3.2.3 Complicating Factors

Care must be taken when recording an energy environ-
ment. The sensitivity of the capacitor powered, energy har-
vesting device under consideration, and the accuracy re-
quired for emulating will influence decisions made when
recording. Choosing the capacitance and cycle frequency of
the custom “smart” load is critical to an accurate I–V sur-
face recording. Capacitance while recording has the effect
of averaging out the surface over some time period as shown
in Figure 9, while this is desirable for slow changing solar
surfaces, as it reduces noise, and makes for cleaner capture
of each individual I–V curve, for fast changing RF surfaces
a low capacitance value must be chosen. Because RF sur-
faces are so volatile, averaging out peaks and valleys in the
recorded surface can change the final harvested power, and
therefore the final program behavior.

The cycle frequency of the smart load also plays a factor
in determining the accuracy of the final constructed surface.
If cycle frequency is set too low for a particular harvester
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(a) Trace with a constant resistive load. Us-
ing just this to generate a I–V curve will
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(b) Trace with smart load cycling at 1 kHz.
The rapid voltage fluctuations explore more
of the the I–V curve. However, the cycle
frequency is not quite high enough to cap-
ture every part of the curve.
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(c) Trace with smart load cycling at 10 kHz.
The cycle frequency is high enough to cap-
ture details of the curve such that we can
approximate the entire surface reasonably
well.

Figure 8. RF energy harvesting voltage trace over 10ms, with three different custom “smart” load cycle frequencies.
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Figure 9. This figure shows the effect of capacitance
while recording an RF I–V surface. As the capacitance
increases the output is averaged, and important features
are lost. Each peak is the custom “smart” load changing
it’s resistance setting, these peaks are absorbed by the
larger capacitance, which means that voltage volatility is
lost. Because of this the I–V surface is not as fully ex-
plored. For solar, this may be acceptable, for volatile RF
harvesting environments, important surface information
will be lost.

type, the final surface will be missing potentially important
features, alternatively, if it is set too high Ekho may not be
able to emulate it fast enough, Figure 8 shows differences
in curve coverage and how they can affect the final surface.
Ekho is configured to support a wide range harvester types,
and therefore can handle many different combinations of cy-
cle frequency and capacitance. In our experiments, we have
found that a capacitance of 10 µF and a cycle frequency of
100 Hz is adequate for recording solar surfaces, while a ca-
pacitance less than 0.1 µF and a cycle frequency of at least
1 kHz is required for recording RF surfaces accurately.
3.3 Emulating I–V Surfaces

Ekho emulates stored I–V surfaces in three phases. First,
the Surface Manager preprocesses each I–V curve in the sur-
face for efficient transmission and emulation. Second, the
curves are communicated at the appropriate time to the I–V

Curve Controller. Third, the I–V curve is emulated by us-
ing the signal conditioning capabilities provided by the front-
end.

In order for Ekho to emulate energy harvesting efficiently,
each I–V curve needs to be represented compactly, in a form
that reduces the computational workload of the I–V curve
controller. To this end, each curve is discretized down to
2n +1 points. A power of 2 is used for efficiency in looking
up currents based on ADC-provided voltage measurements.
The choice of n represents a tradeoff between smaller I–V
curves which can be communicated more quickly, and larger
curves which may represent the original curve most accu-
rately. By default, Ekho uses 65-point curves (n = 6), which
provides good results for most types of energy environments.
Additionally, in order to reduce the computational load fur-
ther, the surface manager precomputes the DAC value that is
required to produce the desired current.

After the surface is preprocessed, the surface manager
begins emulation, sending each I–V curve to the I–V curve
controller at the time it is to be emulated. The new curve re-
places the old curve in the xMega’s RAM, point-by-point, as
it is received. The rate at which new curves need to be sent
depends on the harvester being emulated (some harvesters’
curves change faster than others). For especially fast surfaces
like RF, the I–V curve controller stores the entire surface in
RAM to facilitate 1 kHz curve updates. For the current proto-
type, this limits RF surface length to under one second, in fu-
ture implementations, external memory (FRAM, SDCARD)
will allow much longer RF traces to be emulated.

Throughout this process, the I–V curve controller emu-
lates each curve by simply measuring the test device’s supply
voltage, and playing the appropriate voltage to the front-end
using its DAC, repeatedly. Finding the right DAC value re-
quires two I–V curve lookups—to find the two closes points
on the curve—and a linear interpolation between the two
found DAC values. The voltages output by the DAC are am-
plified by the front-end (increasing the range up to nearly
8 V), and the amplified output is connected, through a low-
tolerance 400 W resistor followed by the 10 W sense resistor
(used for current sensing) to the test device’s capacitor. This
produces a predictable harvesting current (I = V

410W ).
Note that the feedback loop executed by the I–V curve

controller must be extremely fast. The action of emulating



Figure 10. The core of our prototype Ekho implementa-
tion, including two custom analog front-end boards, the
ATXmega256A3B-based I–V curve controller, and the
“smart” load used to explore I–V surfaces during record-
ing. Note that while only a single front-end board is
needed for Ekho to function, we include two so that we
can easily switch between experimental configurations.
A shielded enclosure and shielded cabling are used to re-
duce induced measurement noise. An external NI USB-
6356 data acquisition device (DAQ) (shown on the right)
is used in our experiments to confirm Ekho’s measure-
ments. The DAQ can also be used to provide recording
speeds that exceed the capabilities of the I–V curve con-
troller when needed.

a current, in addition to the current draw of the test device,
causes the supply voltage to increase or decrease, which ne-
cessitates a change in current. Using a larger capacitor to
store the harvested energy will cause the supply to change
more slowly, giving Ekho more time to respond.

4 Implementation
In order to evaluate the efficacy and usefulness of our ap-

proach, we have implemented a prototype Ekho emulator,
shown in Figure 10, that is able to record and replay energy
harvesting conditions. This prototype consists of a surface
controller, an I–V controller, and a custom analog front-end.

The system employs a variety of different hardware com-
ponents. The surface manager is implemented using a
Windows 7 (64-bit) desktop. The analog front-end is im-
plemented with a custom printed circuit board (PCB) that
provides filtering and amplification for accurately measur-
ing low-amplitude current and voltage signals. The ana-
log front-end is powered by a 9V DC source.While Ekho
is designed for low current harvesting scenarios our cur-
rent implementation can accept harvester input voltages up
to 8 V and input current up to 0.5 A. This allows a broad
range that can handle most low power devices. Our proto-
type uses two different devices to implement the I–V curve
controller functionality—an Atmel ATXmega256A3B mi-
crocontroller [6] when in emulation mode, and an NI USB-
6356 data acquisition device (DAQ) [10] when in record
mode. The DAQ provides the needed high-speed data collec-

Light Control

Light Bulb

Solar Panel

Power Supply

Figure 11. Our prototype light-box implementation
provides a reproducible solar harvesting environment
that we use in our experiments to provide reproducible
“ground truth” harvesting conditions. The implementa-
tion consists of a automotive headlight, a solar panel, an
Arduino which serves as programmable dimmer-switch,
and necessary power supply.

tion capabilities needed for recording, while the ATXmega
provides a 32 MHz processor with integrated ADC and DAC
for low-latency emulation. Total cost of the system, includ-
ing ATXmega, Arduino, custom circuit boards, and parts
(excluding the DAQ) is less than $700. In future versions
of Ekho, we hope to combine the I–V controller functional-
ity into a single computing device. The low-amplitude sig-
nals that Ekho must measure are highly susceptible to noise,
induced from ambient electromagnetic radiation (from AC
power lines and RF transmitters). A shielded enclosure and
shielded cables are used throughout, in order to mitigate this
problem.

We also use the NI USB-6356 to collect voltage and cur-
rent measurements during our experimental evaluation, as is
described in the following section.

In addition to the Ekho apparatus, itself, we have also im-
plemented the software necessary for recording, processing,
and emulating energy environments. For recording, we in-
terface with the NI USB-6536 to record a physical energy
environment. The NI USB-6536 offered sampling rates up to
1 MHz and usually operates between 200 kHz and 500 kHz.
During processing, we used a combination of python, C, and
C++ to process and gather relevant data and generate I–V
curves. The GNU scientific library [8], as well as Numpy [1]
and Scipy [13], provide polyfit and data processing power
that generate I–V curves and surfaces from recorded I–V
traces. R provided some surface visualization and data ver-
ification functionality as well. For emulating I–V environ-
ments, we use custom software written in C to handle timing
on the PC that is responsible for appropriately timing traces
and relaying data to the XMega as necessary. The XMega
code is written in C and stores a curve in memory. It then
constantly alternates polling an ADC for new voltage read-
ings and a USART for new curve data. As voltage readings



Figure 12. Our prototype RF-box provides a repro-
ducible RF harvesting environment used in our experi-
ments to provide “ground truth” harvesting conditions.
The RF-box is composed of a wooden shell layered with
brass screen copper mesh seals. Inside the box is an an-
tennae, driven by a programmatically controlled reader.

and curve data become available, it alters its DAC output and
stored curve data appropriately. For emulating curves that
change very fast, but are short in duration, the entire surface
is kept in the memory of the XMega. All code and hardware
designs will be made available via our website at publication
time.

In order to support more accurate recording (as described
in Section 3.2), we have also developed a custom “smart”
test load, which rapidly alters its power consumption, in or-
der to induce large fluctuations in supply voltage for more
accurate recording. We have implemented this smart load
using an Arduino Uno to control a digital potentiometer. The
potentiometer [19] acts as a resistive load, with 128 settings
ranging from 0 W to 100 kW of resistance. During the record
phase the Arduino cycles through a predetermined number
of these resistance settings randomly for a given time delay,
producing a wide range of different load currents that explore
different parts of the current I–V curve.

The light-box used for much of the energy recording and
emulating experiments is shown in Figure 11. As imple-
mented, our lightbox consists of a light source (an automo-
tive headlight), which can provide 256 different intensity set-
tings. A solar panel is mounted inside the chassis which
provides shielding from outside light sources. An Arduino
Duemilanove-328 uses pulse-width modulation to driver a
dimmer switch inside the light-box to control light intensity.
This provides a relatively repeatable energy environment for
comparison with Ekho.

To facilitate a repeatable and noise free RF energy envi-
ronment, we built a small Faraday cage out of brass screen

and copper mesh seals, fully enclosed in a wooden box as
shown in Figure 12. This RF-box effectively isolates the in-
terior of the box from radio, wifi and other types of wire-
less interference. We mounted a programmable antennae
connected to an Impinj Speedway Revolution UHF RFID
Reader on the bottom of the cage to act as an energy source
for RFID scale motes. By changing the transmit power of the
antennae, many different I–V surfaces can be created. How-
ever, since each transmit power can generate thousands of
different I–V curve, this is not always necessary.

5 Evaluation
In this section, we evaluate Ekho’s ability to accurately

capture energy harvesting conditions and consistently re-
produce them in order to provide energy harvesting system
designers with tighter experimental control, during testing.
Specifically, we evaluate the consistency and accuracy of
Ekho with respect to two programmable physical environ-
ments; the light-box and the RF-box. As a comparison, we
also evaluate the previously discussed naive approach of re-
playing a recorded power trace (always replaying the same
power, regardless of voltage). This comparison is conducted
for a variety of different harvesting traces and loads (i.e. test
programs). We also provide a more focused evaluation of
Ekho’s individual components (record and emulate) in order
to explore the current limitations of Ekho and our prototype
implementation.

In our experiments Ekho was able to emulate solar I–V
surfaces more consistently than our light-box, in terms of re-
producing program behavior; in physical terms, Ekho is able
to consistently produce I–V characteristics that vary by less
than 68.7 µA2 from test run to test run, emulating recorded
solar I–V surfaces to mote-class devices running a variety of
test programs. Ekho reproduces the solar I–V trace with a
mean error of less than 77.4 µA from the recorded surface.
Demonstrating the generality of Ekho; Ekho was able to em-
ulate RF I–V surfaces significantly more consistently than
the RF-box, for three (3) different transmit powers. In our
experiments Ekho was able to reproduce RF energy harvest-
ing conditions effectively such that program behaviors were
accurate in comparison to the RF-box. In contrast, we also
show how the naive approach of emulating constant power
produces behavioral results that are inconsistent with the
light box, for battery-less, energy harvesting devices, and in-
adequate for predicting the performance of these these small
devices in deployment.

5.1 Methodology
Our evaluation involves emulating a total of 10,647 so-

lar I–V curves, generated from 27 different randomly gen-
erated light-box traces (ranging from 6 seconds to 5 min-
utes in length), for a total of 1,029,000 solar I–V curves
tested. In our evaluation comparing the accuracy of emulat-
ing constant power versus emulating I–V, we emulate a total
of 3408 constant power curves, generated from three pro-
gram’s harvested power traces. We emulate a total of 320 RF
I–V curves, generated from three different recorded transmit
power levels, for a total of 6400 RF I–V curves tested.

2depending on capacitance



Replaying power with different training programs (Flash Writes)
Static training SemiAdaptive training Adaptive training

Program mean stddev mean stddev mean stddev

Static 330.0 3 558.0 10 566.0 2
SemiAdaptive 214.0 10 414.0 5 469.2 24
Adaptive 29.6 4 16.0 3 5.1 1

Table 1. This figure shows the results of emulating constant power using power traces recorded at program execution.
By using constant power to emulate what is actually an I–V-curve, behavior (here shown as Flash Writes) is dramatically
different than deployment behavior as compared to the light-box behavioral results in Table 2.

Test Devices: For test devices in our solar and constant
power experiments, we use the EZ430-RF2500, a mote-class
device produced by Texas Instruments, that consists of a
MSP430F2274 ultra-low power microcontroller and a low
power, 2.4Ghz CC2500 radio; a 10 µF capacitor is used to
store energy. For our RF experiments, we use the Umass
Moo [26], an ultra-low power CRFID platform built around
a MSP430F2618 microcontroller, and RF harvesting hard-
ware. No batteries were used as power sources in any exper-
iment, each mote device is powered exclusively from energy
harvested and held in small capacitors.

Programs: For solar experimentation; the EZ430-RF2500
devices run three different programs—Static, SemiAdaptive,
and Adaptive—that provide different power consumption
profiles and represent behaviors commonly seen in sensing
applications. All three periodically read from the MSP430’s
internal temperature sensor and store the value to the sensor’s
internal flash memory. Between readings, all three programs
put the the processor to sleep to conserve energy. They dif-
fer in how they manage energy. Static maintains a steady
sampling rate regardless of energy availability. SemiAdap-
tive reduces its sampling rate when its voltage drops below
a set threshold (2.3 V), in order to spend more time asleep
and hopefully avoid a power failure. In addition to reduc-
ing its sampling rate during low energy conditions, Adaptive
also increases its sampling rate when the its capacitor voltage
exceeds a predetermined threshold (2.7 V), using its excess
energy to collect more data. For RF experimentation, the
Umass Moo devices run one program—Sense and CRC—
that senses the internal temperature of the MSP430 using an
onboard ADC five times, averages the readings, then CRC’s
the resulting data.

Harvesting Traces: We use the light-box, described pre-
viously, to provide a reproducible physical environment to
serve as the ground truth for our experiments. We gener-
ate light-box traces, by randomly choosing a small number
of light intensity settings distributed over a short amount of
time, and interpolating those points using cubic splines, with
exact boundary conditions. This is done multiple times to
produce sets of different light-box traces. To test responsive-
ness of Ekho each of the solar traces changes much more
rapidly than what would be seen in an outdoor deployment,
with variations every 60ms. RF harvesting traces are gener-
ated for us by the inherent volatility of an RF reader, for our
evaluation, we only modulate the transmit power. Despite

this, RF traces are naturally much more frantic and interest-
ing than any solar traces generated.

I–V surfaces: From the randomly generated light-box
traces, and the transmit power traces gathered in the RF-box,
I–V surfaces are generated using the previously mentioned
smart-load. Parameters such as cycle frequency (number
of times a second the smart load goes through all its resis-
tance settings), and capacitance are chosen so as to give the
best results for each surface type. Choosing different capac-
itance or period values can have a significant affect on the fi-
nal granular accuracy of the recorded surface,as discussed in
Section 3.2.3. Drawing on those observations, surfaces gen-
erated for RF emulation were gathered with smoothing ca-
pacitance < 0.1 µF and very high cycle frequency, while the
solar surfaces had smoothing capacitance 10 µF and much
lower cycle frequency.

Constant power surfaces: Using the light-box traces men-
tioned above, we generate constant Power surfaces from
recorded power traces captured as different programs exe-
cute. Each power surface is generated from a single recorded
trace chosen arbitrarily from a set of device runs. We create
constant power surfaces for each of the three EZ430-RF2500
programs mentioned while running on a light-box trace.

Distance metrics: To evaluate the physical accuracy of
Ekho a metric was needed to compare two I–V curves. This
is difficult for two reasons. First, an I–V curve relates two
incommensurable units (Volts and Amperes), this renders as
meaningless any euclidian distance from the curve. Second,
there is not a 1-to-1 mapping between an observed (I,V) pair
and an emulated (I,V) pair. The observed point could corre-
spond to any number of points on the curve being emulated.
In our development of Ekho, we have explored two metrics,
current error (assuming the observed voltage is correct and
measuring the difference in current) and voltage error (as-
suming the observed current is correct and measuring the
difference in voltage). The current error is amplified (even
for points very near the surface, as shown in Figure 13) when
the voltage is high and the I-V curve is steep. Voltage errors
are similarly amplified when the voltage is low, and current
is high.

Using these devices, test programs, programmable envi-
ronments, harvesting traces, surfaces, and metrics we eval-
uate Ekho’s ability to record and recreate energy harvesting
traces produced by both the light-box and the RF-box. We
measure the accuracy and consistency of Ekho, explore the



the experimental characteristics that affect the system’s per-
formance, and demonstrate the generality of Ekho. We at-
tempt to answer these questions:

1. How consistent / repeatable is Ekho?
2. How accurately, in terms of behavior and physical con-

ditions, can Ekho emulate energy environments?
3. Is Ekho able to record and emulate multiple types of

energy harvesting environments effectively?
Before we can explore these questions, we first need to

understand exactly why simulating constant power is not suf-
ficient for accurate testing of small, capacitor powered en-
ergy harvesting devices, we show our results in section 5.2.
We then explore solar harvesting consistency results of Ekho
in section 5.3, and show solar recording and emulation ac-
curacy of Ekho in section 5.4. Lastly, we show consistency
and behavioral accuracy results of Ekho with regards to RF
energy harvesting in section 5.5.
5.2 Emulating P vs. I–V

To evaluate our claim that emulating power is not suf-
ficient to simulate an actual energy harvesting environment
in a deployment, we created constant power traces gathered
from executing our three sample programs. Each power trace
was generated from one run of a program. We then com-
pared the behavior (Flash Writes) by running each program
on the light-box five (5) times, then on the Ekho generated
I–V-surface five (5) times, then on all three of the generated
constant power-surfaces five (5) times each. We measure dif-
ferences in program behavior by recording the number of
successful writes to flash memory that were performed by
each test run. Table 1 shows that the constant power-surfaces
generally underestimated or overestimated for all programs
except (as would be expected) the program that the constant
power-surface was generated from. In some cases the error
was very apparent; when using Static as a training set, run-
ning SemiAdaptive gave half the amount of expected flash
writes; when using SemiAdaptive as a training set for a con-
stant power surface, and running Static on that surface, the
flash writes were severely overestimated.

The choice of which run to use to generate the power trace
can have a large impact on the emulated behavior. For exam-
ple, if an outlier run (where lower or higher than average
flash writes occurred) was arbitrarily chosen as a training set
to generate a constant power surface, programs ran on the
generated surface could significantly differ from the average
run. This is apparent in the Adaptive column and row of Ta-
ble 1, where runs on the Adaptive Training surface produced
significantly less flash writes than the average Adaptive run
on the Lightbox shown in Table 2. These results confirm
what was previously shown in Figure 4, emulating power is
not effective for devices with a volatile supply voltage.
5.3 Reproducing Program Behavior

The primary objective of Ekho is to make device be-
haviors consistently repeatable in spite of variations due to
the energy harvesting. Our first experiment examines Ekho
against this goal.

In this experiment, we recorded a randomly generated
light-box trace using Ekho. We then use Ekho to emulate the
recorded surface fifteen (15) times, five (5) times using each

Program Behavior (Flash Writes)
Ekho Light-Box

Program mean stddev mean stddev

Static 326.0 4 291.6 8
SemiAdaptive 441.2 14 418.0 35
Adaptive 11.6 9 11.2 11
Table 2. Program behaviors (in the form of flash writes)
are shown for three test programs, when harvesting en-
ergy from the light-box and from the Ekho emulator (em-
ulating the recorded light-box trace). For all applica-
tions, the Ekho-powered devices closely approximate the
ground truth behaviors. Ekho reproduces these behav-
iors with better consistency than the light-box.

Emulation Error
Program mean stddev

Static 87.2 µA 46.7 µA
SemiAdaptive 86.9 µA 46.2 µA
Adaptive 88.9 µA 72.5 µA

Table 3. Emulation error—the distance of an emulated
point from the intended I–V surface—is shown for the
three test programs, while emulating a Ekho-recorded
randomly-generated light-box trace. Ekho has a slightly
higher error rate on the high voltage, low current area
of the I–V-curve, this is because slight changes in voltage
are accompanied by large changes in current; however,
this area of the curve is generally avoided as it denotes an
an inefficient use of harvested energy.

of our three test programs as the test device. As a point of
comparison, we also run each of our three test programs five
(5) times powered by the light-box directly, using the same
randomly generated trace. We measure differences in pro-
gram behavior by recording the number of successful writes
to flash memory that were performed by each test run.

Table 2 shows the results of this experiment. For each pro-
gram the average number of writes per test run, and the stan-
dard deviations are shown for both the Ekho and the light-
box test runs. This table shows the result for a single light-
box trace; however, we have found these results to be con-
sistent across all of the randomly generated traces, we have
tested. For all three programs, the behavior of the devices
under Ekho emulation closely approximates the ground-truth
behaviors. Behaviorally, Ekho was more consistent and had
a smaller standard deviation in flash writes for each test pro-
gram. In each case, Ekho emulation was comparable in phys-
ical consistency with the light-box output as shown in Ta-
ble 4.

5.4 Emulation Accuracy
Ekho is designed to make program behaviors determinis-

tic, by accurately and consistently reproducing the physical
energy harvesting environments that determine program be-
haviors. In order to determine how well Ekho reproduces
the physical energy harvesting environment, we also mea-



Physical error by Program
Ekho Light-Box

Trace mean mean

Static 66.3 µA 50.6 µA
SemiAdaptive 72.6 µA 56.2 µA
Adaptive 67.3 µA 53.1 µA

Table 4. Physical consistency over multiple runs is shown
with the three test programs. The same light-box traces
were recorded, and then emulated by Ekho with the same
load to compare the physical consistency and repeatabil-
ity of experimentation. Ekho performs with nearly the
same physical consistency as the light-box.

sure the characteristics of the emulated energy harvesting
conditions.

Table 3 shows the measured current error between the
emulated surface and the intended I–V surface. For each
program the mean emulation error (the distance in µA from
the emulated surface to the intended surface for a voltage)
is shown, as well as the standard deviation of this error. The
choice of current error is arbitrary, as voltage error could also
be used to the same result, as discussed in Section 5.1. These
results are for a single, representative light box trace; other
traces tested produced comparable results. For all programs,
Ekho was able to reproduce I–V surfaces accurately enough
that behavior remained consistent.

Emulation error is also influenced by the natural shape
of the I–V-curve as shown in Figure 13; on the high voltage
part of the curve, past the knee the error rate increases as the
slope of the curve increases, since minimal changes in volt-
age come with large current changes. While Ekho was not
as consistent in emulation error in this area of the curve, this
is not as important, as energy harvesting sensors start wast-
ing energy (that could power useful computation) when they
enter the steep high-voltage end of the curve that denotes a
full capacitor with minimal processing / current draw. For
example, a deep sleep program (refer to Figure 3). This is
a departure from a traditional sensors application paradigm;
which uses duty cycling to prolong battery life, and therefore
extend the lifetime of the sensor.

5.5 Emulating RF Energy Sources
In this experiment we profiled the program behavior of

devices powered through the RF-box (detailed in Section 4).
We then compared those results to the same device powered
by Ekho instead. To profile RF-box behaviors, we placed
the detached RF energy harvester from a Moo inside the RF-
box over the reader antennae. We then took another Moo
and connected it to the output of the harvester, outside of the
Faraday cage so that the RF signals would not interfere with
each other. This provided a repeatable, programmable RF
energy environment that served as a ground truth for all our
RF experiments with Ekho. We ran similar consistency ex-
periments as were run on the light-box; the Moo under test
was programmed to sense its internal ADC for temperature
five times, average that data, then CRC the data. It did this as
many times as it could before brownout. Using the DAQ and
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Figure 13. Shown in the top part of this figure are the tar-
get curve Ekho is emulating, and the actual range emu-
lated for a number of test runs on a program. The bottom
part of the figure shows the error amount for different
parts of the emulated curve. As the slope increases, the
current error increases past the knee of the I–V-curve.

Ekho, we monitored the number of CRC’s performed and
when they occurred, and the times that the Moo lost power.
We conducted these experiments multiple times and found
that the RF-box was reasonably consistent (as shown in ta-
ble 5) in regards to program behavior. However, we found
that at low transmit power, the consistency of the RF-box
deteriorated dramatically. We attribute this to timing issues
with synchronizing the RF-box, the DAQ, and the host com-
puter. Using a dedicated (but expensive) signal generator
could provide a more repeatable RF energy environment at
low transmit power.

To evaluate Ekho’s behavioral performance with volatile
RF energy, we recorded and then constructed an I–V surface
generated from each of three different transmit power levels
using Ekho. To vary the I–V surface, we at first varied the
transmit power over time; this proved unnecessary as an RF
surface changes upwards of 1000 times a second for an ar-
bitrary transmit power. We then used Ekho to emulate each
recorded surface nine (9) times, for the Sense and CRC pro-
gram running on the Umass Moo. We measure differences
in program behavior by recording the number of CRC’s that
were performed by each test run.

Table 5 shows the results of this experiment. For each pro-
gram the average number of CRC’s per test run, the standard
deviations, and the error rates are shown for both the Ekho
and the RF-box test runs. This table shows the results for
RF traces that were 120 ms in length. While this may seem a
short timespan, because of the volatility of RF energy, eighty
(80) different I–V curves were emulated in this window. In
all cases, the behavior of the devices under Ekho emulation
closely approximates the ground-truth behaviors of the RF-
box. Behaviorally, Ekho was significantly more consistent



RF Program Behavior (CRC’s)
Ekho RF-Box

Transmit Power Harvested Energy mean stddev error mean stddev error

+21.25dBm 0.55 mJ 23.6 0.6 2.3% 21.0 8.3 39.4%
+27.75dBm 2.57 mJ 208.7 0.7 0.3% 189.2 39.1 20.7%
+32.5dBm 3.88 mJ 237.3 1.3 0.5% 266.2 12.5 4.7%

Table 5. Program behaviors are shown for the Sense and CRC test program running on the Umass Moo, when harvesting
energy from the reader inside the Faraday Cage and from the Ekho emulator (emulating the recorded RF trace). The
number of successful sensed and CRC’d readings were counted and compared. Additionally, the total harvested energy
is shown for each transmit power. For all transmit powers, the Ekho-powered devices closely approximate the ground
truth behaviors. Ekho reproduces these behaviors with significantly better consistency than the RF-Box, especially for
lower transmit power. Note that since the entire surface is stored in RAM of the I–V curve controller, the error rates are
much lower than with solar emulation.

and had a smaller standard deviation and error rate for each
transmit power, but especially for the lower transmit powers.
5.6 Complicating Factors

Different decisions when recording, and emulating I–
V surfaces influence the final accuracy and consistency of
Ekho. Because of the hardware limitations of the XMega
microcontroller I–V controller (specifically the serial com-
munication speed), Ekho running regularly is only able to
emulate I–V surfaces that switch curves at a maximum rate
of 135 Hz. Since RF surfaces can switch curves upwards
of 1000 times a second, when emulating RF, those surfaces
must be held entirely in RAM on the XMega microcontroller
I–V controller. This allows a curve switching speed beyond
1000 Hz (for 65 point I–V curve representations), but lim-
its surface length to sub-second levels. To simulate longer
surfaces, either a larger RAM must be used, or other types
of fast access external memory be made available (FRAM,
or SDCARD), or a faster BUS implemented in hardware.
We plan to address this in the future. Another factor is re-
sponse time—the XMega microcontroller is able to respond
to current fluctuations in 4 µs, added capacitance in the cir-
cuit increases accuracy somewhat as it allows more time for
the XMega microcontroller to respond to changes in current,
but this also decreases the maximum effective curve switch-
ing rate, causing Ekho to skip curves when emulating, and
thereby reducing accuracy of the whole surface. In emula-
tion, the speed at which the XMega microcontroller can de-
liver curves influences the maximum surface speed. Also,
the number of points used to represent a curve in memory
influences this. Choosing fewer points (for example 33 in-
stead of the current 65) can increase emulation speed. Trade-
offs between emulation speed, and accuracy can be made in
multiple places throughout the recording / emulation chain.
Many of the same tradeoffs detailed in Section 3.2.3 apply to
emulation as well.

6 Related Work
We proposed the conceptual framework for Ekho at Hot-

Power 2011 [27] and introduced the idea of I–V curve-based
emulation of energy harvesting conditions, but presented
only a cursory evaluation of a prototype that lacked the abil-
ity to record and estimate I–V curves and could only em-
ulate single static I–V curves with error rates as high as

170µA. Our work builds on the ideas proposed in Hot-
Power 2011 [27], and demonstrates that I–V surfaces can be
accurately recorded and emulated, in order to provide both
realistic and repeatable experimentation.

Another closely related project provided an analog hard-
ware solution, specifically designed for larger solar harvest-
ing applications [2], which used a high gain Darlington tran-
sistor to approximate the shape of a solar I–V curve. They
also used a model of solar output based on temperature, hu-
midity, and ambient light conditions to capture solar harvest-
ing conditions. While this approach does allow for capture
and replay of energy harvesting conditions, this approach
is limited to a single energy harvesting technology (solar),
while Ekho can record and emulate Solar and RF. It is also
difficult to know how well this approach compares to Ekho,
since accuracy and consistency results are not available.

Other related work include simulation tools for low-
power sensors [18, 23], some of which support RFID-scale
sensing by considering I–V relationships when simulating
harvesting conditions [9]. As described previously, these
techniques are able to provide many of the same benefits as
Ekho, but at a higher maintenance cost (models need to be
updated to support new hardware).

Analog battery simulator B# [5] [20] is tangentially re-
lated to Ekho, in that it measures a current load, then com-
putes a voltage from a battery simulator and mimics that
voltage on a regulator. However, B# is only applicable to
specific battery chemistries, and does not support recording
of an actual I–V surface (it uses a battery simulator as a volt-
age lookup), nor does it have the ability to emulate volatile
energy sources like RF and kinetic, or even solar. Ekho pro-
vides a more generalized approach that works with surface
mount capacitor powered devices and does not rely on com-
putationally expensive simulation models or profiling spe-
cific battery chemistries. Ekho is not a battery simulator, nor
is it meant for devices that use batteries.

Finally, a number of tools make it possible to measure
and characterize the energy consumption of embedded de-
vices [12,25]. In addition to enabling energy aware software
systems, we envision these technologies being extended in
order to allow sensor devices to profile their own harvest-
ing conditions in order to better predict their future energy



budgets and operate more closely to their power harvesting
potential.

7 Discussion & Future Work
Ekho is designed to be the multipurpose tool for record-

ing and emulating a wide range of energy harvesting envi-
ronments, provided in a single integrated package. Based on
the results described in the previous section, Ekho promises
to make it possible to experiment with a wide range of low-
power, energy harvesting devices, to an extent that has, to
date, been infeasible. In spite of this promise, our current
implementation is limited in a number of important ways.
This section discusses these limitations and our efforts in the
coming months on future work.

Many of the limitations of our Ekho prototype stem from
current hardware restrictions that can be overcome by readily
available parts. The current 7.4 ms curve update limitation
when emulating energy environments is the result of speed
constraints imposed by the usb-serial port on the XMega mi-
crocontroller. We have shown that we can overcome this
limit using onboard RAM to store surfaces, which was nec-
essary for RF emulation. In the future, improving this update
speed by adding more RAM or implementing a faster BUS
will allow Ekho to emulate I–V surfaces that require more
frequent I–V curve updates, and will also allow longer RF I–
V surfaces. Replacing our current 12-bit ADC and DAC with
faster 16-bit models will also improve accuracy and mea-
surement ability.

Ekho has no inherent constraints that preclude mobile de-
ployment; however, we designed a larger prototype to sim-
plify testing, debugging, and evaluation. Future work on
Ekho will involve developing a much smaller mobile version
that will enable I-V surface recording in remote field loca-
tions. This version will not require the use of a dedicated
DAQ.

In order to evaluate other harvesting environments that
change more rapidly (like kinetic / vibration), we will also
need to develop new programmable energy environments
for testing. These will complement our existing light-box
and RF-box. We are in the process of developing pro-
grammable vibration energy and thermal energy harvesting
environments. These will present a new challenge to emu-
late energy environments that present different I–V patterns
and eccentricities. Future work on Ekho will include perfor-
mance verification using different energy harvesting devices
and environments.

We also plan to explore ways to automatically tune some
of Ekho’s system parameters, like the window size used to
infer I–V curves, the smoothing capacitance, and the custom
“smart” load cycle frequency during record. Automatically
detecting the window size by actively detecting the level of
movement across an I–V curve and adjusting the window
size to use the smallest possible complete data set, will make
Ekho easier to use and improve recording precision. Auto-
matically adjusting the period and capacitance of the smart
load will also make the recording process more straightfor-
ward.

8 Conclusions
In this paper, we have described the design and evaluation

of Ekho, an emulator that makes reproducible experimen-
tation with energy harvesting devices possible, without the
need for hardware and harvester models (required by simu-
lators). Ekho is able to record energy harvesting conditions
and accurately recreate those conditions in a laboratory set-
ting consistently.

Ekho is a general-purpose tool that supports a wide range
of harvesting technologies. We have demonstrated, using
a working prototype, that Ekho is capable of reproducing
harvesting-dependent program behaviors by emulating solar
energy harvesting conditions accurately to within 77.4 µA,
and more consistently than our light-box, a programmable
solar harvesting environment. Demonstrating the generality
of Ekho; we have shown that Ekho is able to emulate RF I–
V surfaces significantly more consistently than our RF-box,
for a variety of loads and I–V surfaces. Ekho was able to
reproduce RF energy harvesting conditions effectively such
that program behaviors were accurate in comparison to the
RF-box.

As embedded sensing devices continue to become
smaller, with tighter energy constraints, energy harvesting
will continue to become more important, and tools like Ekho
will make possible the realistic and thorough testing that will
be needed to deploy those devices with confidence.
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