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Battery-free sensing devices harvest energy from their surrounding environment to perform sensing, computation, and
communication. This enables previously impossible applications in the Internet-of-Things. A core challenge for these devices
is maintaining usefulness despite erratic, random or irregular energy availability; which causes inconsistent execution, loss
of service and power failures. Adapting execution (degrading or upgrading) seems promising as a way to stave off power
failures, meet deadlines, or increase throughput. However, because of constrained resources and limited local information,
it is a challenge to decide when would be the best time to adapt, and how exactly to adapt execution. In this paper, we
systematically explore the fundamental mechanisms of energy-aware adaptation, and propose heuristic adaptation as a method
for modulating the performance of tasks to enable higher sensor coverage, completion rates, or throughput, depending on the
application. We build a task based adaptive runtime system for intermittently powered sensors embodying this concept. We
complement this runtime with a user facing simulator that enables programmers to conceptualize the tradeoffs they make
when choosing what tasks to adapt, and how, relative to real world energy harvesting environment traces. While we target
battery-free, intermittently powered sensors, we see general application to all energy harvesting devices. We explore heuristic
adaptation with varied energy harvesting modalities and diverse applications: machine learning, activity recognition, and
greenhouse monitoring, and find that the adaptive version of our ML app performs up to 46% more classifications with only a
5% drop in accuracy; the activity recognition app captures 76% more classifications with only nominal down-sampling; and
find that heuristic adaptation leads to higher throughput versus non-adaptive in all cases.

ACM Reference Format:
Abu Bakar, Alexander G. Ross, Kasım Sinan Yıldırım, and Josiah Hester. 2021. REHASH: A Flexible, Developer Focused, Heuristic
Adaptation Platform for Intermittently Powered Computing. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 5, 3,
Article 87 (September 2021), 42 pages. https://doi.org/10.1145/3478077

1 INTRODUCTION
Miniaturization of energy harvesters and computation has recently enabled battery-free mobile sensing devices
which promise longer lifetimes over their battery-powered predecessors. Battery-free sensors harvest energy from
the ambient (solar, RF, and other sources), store it in tiny capacitors, and execute intermittently because of frequent
power failures from energy scarcity. Despite their intermittent operation, these devices enable applications in the
enormously hyped vision of ubiquitous computing, smart dust [44], and the TerraSwarm [49] because of their
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Fig. 1. A simple sense and send application samples the temperature sensor 5 times and sends it to a base station. Energy
harvesting causes power scarcity and outages creating a non-termination state. Checkpoints or task divisions maintain
forward progress but lead to a greedy execution that takes a much longer time. Adaptive execution strategies (top of the
figure) quickly adapt to changing environmental conditions and finish off quickly—using harvested energy efficiently by
gracefully modifying execution.

increased lifetime, reduced size and cost [33], and lower environmental impact [33, 54, 76]. However, frequent
power failures where the stack frame is lost, CPU is reset, and peripherals are left in undefined states make
development complex. Battery-free sensors (and energy harvesting sensor generally) cannot easily make use of
a traditional embedded computing development stack, like TinyOS [51] Contiki [19], or mBed—making their
large-scale deployment even more challenging.

Solving the intermittent computing problem has been challenging, with existing techniques split between two
different approaches. In checkpointing approaches [5, 6, 8, 12, 36, 43, 46, 55, 57, 69, 69, 78], volatile content of the
MCU, i.e., registers, stack, and the heap, is dumped into the non-volatile memory at specific points to ensure
forward progress and memory consistency. In task-based approaches [12, 34, 56, 80], checkpointing is eliminated
by asking programmers to decompose their program code into smaller idempotent units called tasks, which are
atomic code blocks that can be executed completely once the capacitor is fully charged. Hardware platforms like
Flicker [31], Capybara [14], and BOTOKS [17], and tools like Ekho [27] and EDB [15] have made development
faster and more straightforward.
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Core Challenge
The main difficulty in intermittent computing is maintaining performance and usefulness despite erratic, random,
or irregular energy availability. These frequently failing systems are sensitive to the energy harvesting envi-
ronment. Since tasks have rigid energy requirements, if the energy available in the environment is not enough
to power a task (like calculating average motion), then the task will never complete. If the frequency of power
failures and the length of power outages is higher than usual, these systems fail to produce useful outputs within
a reasonable time (Fig. 1) and waste vital energy on checkpointing and non-useful computations. What is needed
is a mechanism for adaptation so that tasks can be degraded or upgraded depending on the available energy to
ensure that something useful happens. However, making this adaptation flexible, general, and most importantly
understandable (in terms of understanding how the design decisions impact performance), is a challenge.

Works like Capybara, Flicker, and BOTOKS provide dynamic reconfigurability in hardware to change function in
the face of energy harvesting. At the same time, runtime systems like InK [80] have notions of priority to provide
some options when available energy is scarce. Recent work has tried to account for dynamism by automatically
degrading performance tomeet deadlines [58] or skipping task commit operationswhen energy is abundant to save
time [59]. Finally, inference focused platforms like ePerceptive [65] and Zygarde [40] degrade machine learning
tasks to meet deadlines or stay alive. These nascent efforts have not yet enabled generalized adaptive computation
for intermittently powered devices or, perhaps more importantly, given the programmer flexibility and control on
how and when to adapt. Without robust and programmer-specified adaptation, intermittent computing devices
will be constrained in their potential deployment locations and reduced usefulness. Adaptation will increase the
availability and responsiveness of battery-free devices, enabling numerous new applications. However, increased
choices and flexibility lead to an increased tradeoff space. Programmers may become overwhelmed with the knobs
and the variables, and possible configurations. For example, when choosing between degrading the sample rate
or the communication rate when energy is low, the developer might be wondering what the impact of a certain
decision will be on performance. The developer has little insight into how well the program will perform in the
wild, or even if the program as written can get things done under the most likely energy harvesting environment.

Contributions: REHASH Runtime Framework and Toolchain
This paper describes a runtime system, framework, and complementary tool for developers to write robust
intermittent applications that are highly adaptive to the energy available to the battery-free sensing devices
and easily controllable/specifiable based on the application and energy environment constraints. Adaptation
has emerged as a likely fundamental building block for intermittent computing and energy harvesting systems
generally. However, the underlying mechanisms for deciding when to adapt, how to adapt, and how to specify and
control adaptation for an arbitrary application and platform remain hidden or invisible in all prior work. Prior
work has enabled rigid adaptation that is platform-dependent and out of the control of the programmer. All prior
work employs only one adaptation policy based on an implicit heuristic (i.e., the voltage level on the capacitor)
and knob (i.e., the checkpoint frequency). However, the choice of heuristics and knobs to adapt greatly depends
on the application as well as the programmers’ goals, not on the rigid policies employed by the underlying
runtime. Finally, all adaptive systems to date hide the effect of adaptation on the application; basically, it is very
difficult for a programmer to interpret the effect of a minor change in the heuristic, or runtime configuration, on
the actual application performance. This work seeks to free the developer from these rigid constraints of other
runtime systems and to elucidate how design decisions impact the application performance of these systems.
Our key insights are on the when and how of adaptation. We observe that easily gathered signals stemming

from the intermittent operation of a sensor can provide a useful heuristic for estimating current and future
energy availability. By taking these signals and applying simple transformations like taking into account history
to understand the energy trend, these signals turn into fast, low overhead, and hardware-independent triggers
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for when to adapt to degrade or improve execution. One example signal, the change in length of a power failure
over time, is a direct marker of an environment’s energy richness since energy-rich environments will have
shorter off-times as they recharge the capacitor faster. When off-time increases, this would be a signal to degrade
execution to maintain throughput since the environment is experiencing scarcity. When off-time decreases, an
abundance of energy exists so that the execution quality can be upgraded.

The adaptation strategy refers to the actual mechanism used to reduce an application’s energy consumption to
provide higher throughput and availability. All previous adaptive runtimes define this implicitly. An example
would be when an inference task on a low-resolution image must degrade performance to allow for continuous
processing. One adaptation strategy could be to reduce the number of classes the task can recognize (for example,
only recognize "cat", "dog", "null", and leave out "cow"). Another strategy would be to reduce the number of pixels
looked at to make an inference. While the energy reduction is similar, the effect these different strategies have on
the application quality is significant. Therefore the choice of the adaptation strategy employed must be decided
by the developer, instead of the runtime. However, to make a a good decision, the programmer must be able
to see what the impacts of these design choices are. We provide programming model and runtime support for
developers to specify fine and coarse-grained adaptation of tasks from multiple heuristics, providing adaptation
strategies executed by the runtime. Complementing the runtime, we provide a visual and online simulation tool
that illuminates the cost or benefit of design decisions and configurations, enabling programmers to compare
different configurations of an application quickly and without hardware. 1

If adaptation is to become the modus operandi of making intermittent computing work for real-world applica-
tions, we must understand how it works, allow developers to configure and tune the mechanism of adaption
for their application, and provide robust methods and tools for knowing when to adapt and understanding the
performance impact of adaptation design decisions. We build the first heuristic adaptation runtime system and
toolchain enabling these goals of flexibility, explainability, and generality. The core contributions of this paper
are within the development of the REHASH framework and tool; we list the specific merits below:
(1) We outline heuristic adaptation as an approach to enable flexible, general, task-based intermittent computa-

tion that leverages easily gathered signals from changing environmental and physical phenomena, which
are embedded in programmer defined heuristic functions that trigger short-term degradation or upgrading
tasks.

(2) We identify and implement three lightweight, hardware-independent signals to assist this adaptation;
off-time, on-time, and task count; and we design multiple heuristic functions that capture things like history,
deadlines, and trends for general adaptation strategies.

(3) We develop a framework and runtime system (REHASH) for developers to specify how an application should
adapt (or not) at the task level. For the first time, this enables highly flexible applications, finer-grained
programmer control, and application-centered adaptation for intermittently powered systems.

(4) We develop a simulation tool, REHASH-explorer, with visual feedback that helps developers to concep-
tualize the impact of design decisions on energy-efficiency and application performance, building off a
formal model of adaptation.

We release the source code of REHASH as a living artifact hosted publicly on Gitlab2, to enhance replicability
reproducibility for other researchers in this space, as well as to enable application developers who seek to use
REHASH for their own intermittent computing systems. We built REHASH as a flexible, even plug-in-based
framework, which we demonstrate in this paper. We anticipate that the tool and framework will be used and
adapted for future runtime systems built by the community. These contributions make a task-based adaptive
runtime system that i) is flexible and highly tunable to application requirements, ii) is hardware-independent

1A demo of the REHASH-explorer tool can be found at this link https://adaptationprofiler.github.io/adaptation-profiler
2We invite the reader to explore the source and documentation of REHASH at: https://gitlab.com/ka-moamoa/rehash
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Table 1. A comparison of relevant intermittent runtimes with respect to their adaptable computing support. ✓and ✓indicate
a good and a bad feature of the presented runtimes for the adaptation, respectively. Similarly, ✗indicates a good feature and
✗indicates a bad feature for adaptation which is missing in the runtime.

since heuristic signals are easily gathered on commodity platforms, and iii) enables computation despite scarce
energy. Importantly, we note that the presented heuristic adaptation methods generally apply to all energy
harvesting systems (including energy-neutral, power neutral[72], and emergency reserve systems [42]). While
the heuristics may change, the systematic adaptive framework presented is useful for all systems operating under
energy scarcity and dynamism.

2 BACKGROUND: DEFINING ADAPTATION
Energy harvesting devices enable sustainable and affordable sensing across many applications from wearables to
infrastructure monitoring in smart cities, to body implants. While energy is virtually limitless, actual availability
at any point in time is effected by i) the efficiency of harvesters (source), ii) the sporadic availability and dynamic
volume of ambient energy (environment), iii) and the increasing demand of computing for inference and learning
(load) in the "TerraSwarm" as sensors become more intricate. This combination of factors leads to frequent energy
scarcity, which leads to power outages and reduced throughput, sometimes necessitating intermittent execution
through multiple power cycles, as many applications cannot be completely executed in one cycle.

2.1 Intermittent Computing Devices
Energy harvesting devices vary in approach; high powered devices like Signpost [1] which trickle charge a
battery, power and energy neutral devices which trickle charge super capacitors [73], emergency reserve, ultra
constrained devices like Permamote [42] which gather power for all operation from a solar panel but have
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a battery as last resort, and finally intermittent computing devices which frequently fail and have minimal
capacitance. All of these devices are at the whims of the energy environment, and benefit from adaptation.

The most constrained devices among them are the batteryless intermittently powered devices. Devices like the
UMass Moo [81], and WISP [70] have been widely used for in-lab battery-free application development. They
harvest ambient RF, buffer energy into small capacitors, and perform sensing. Other hardware platforms like
Flicker [31], Capybara [14], and BOTOKS [17] have devised ways to intelligently manage harvested energy and
keep track of time. A more recently developed platform, BFree [45] provides energy harvesting hardware that
can be used with common hobbyist platforms, and lets novice developers write applications in Python. These
platforms keep charging their capacitors without powering up the MCU, until an energy threshold is met to
perform sensing and computing tasks. During execution, when the energy is fully drained from the capacitor,
the device dies, resetting volatile state (register file, stack, program counter), preventing forward progress of
computation and destroys memory consistency. This hinders the use of existing programming models designed
for continuously-powered devices running correctly on batteryless sensors.
Software systems for intermittent computing preserve progress and ensure memory consistency by insert-

ing checkpoints throughout program code—which store volatile content into a non-volatile storage (flash or
FRAM [39]) when a power failure is approaching, and restore the execution from the same point when the power
failure is over. Compiler based automatic checkpointing systems [3, 9, 18, 46, 57, 69, 78] either statically insert
checkpoints at arbitrary points or place trigger calls that measure voltage level at different points in program
code in order to determine checkpoint placement. On the other hand, dynamic systems [5, 6] keep monitoring
supply voltage to make decisions on checkpointing. An alternative to checkpointing (which this paper approach
extends) employs task-based programming abstraction models. In these systems [12, 56] developers are expected
to manually define tasks that are guaranteed to either complete by committing their output to non-volatile
memory, or to have no effect on program state. Finally, new programming language primitives as proposed in
[34, 80] use remanence-based timekeeping techniques [17, 35] to meet data expiration deadlines and to keep
track of time in failure, while others automatically degrade performance to meet task deadlines [58].

2.2 Need for Adaptation in Intermittent Computing
The design goal for all of the above approaches is to ensure forward progress while maintaining memory
consistency. Some systems like COALA [59] or CatNap [58] provide automatic response to changes in energy; by
skipping task commit operations or degrading performance to meet a deadline, respectively. But these system
do not provide flexible methods for adapting arbitrary applications to changes in the energy availability. As
an example of what adaptation could be, Fig. 2 shows the sampling activity and energy arrival for an Activity
Recognition (AR) application—a machine-learning based human physical activity classification application that
has been widely used for testing intermittent programming models [12, 25, 34, 55–57]. It collects several (a fixed
number, typically 16) accelerometer samples into a sliding window, converts them into feature vectors, and
classifies the window as moving or stationary. To power up the AR wearable, a capacitor may be used to store
kinetic energy which is released when the person is moving. The stored energy can be utilized later when the
person is at rest. This application is useful to demonstrates why the when and how of adaptation is important.
When low energy causes execution to degrade, multiple strategies can be pursued; reducing sampling rates,
degrading computation, reconfiguring the tasks, depending on the programmer needs.

Adaptation is not a new concept in mobile computer systems; in fact, it is a core factor of numerous classes of
devices, in fact, concepts like imprecise computation and approximate computing in real time systems are highly
related, and have been explored since at least the early 1990s [52]. Recent examples include throttling background
apps [60] or adapting thermal load for android applications [68], to wearables devices that discard video frames
or reduce resolution when battery life is low [66]. Adaptation in intermittent computing devices face different
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Fig. 2. For an activity recognition application, two different adaptation strategies are shown: one that prefers gathering
samples consistently and waiting to compute over them, and another that gathers fewer samples and computes on them. In
strategy 1; deadlines may be missed since no inference is done, but events are all captured, in strategy 2; sampling is reduced
to meet the deadlines, but events may be missed. While both strategies are likely better than not adapting, the choice of how
to adapt greatly depends on the application programmers goals.

challenges than those listed, as they suffer from frequent power failures, have severely constrained resources
compared to any other adaptive system, and are usually limited in capability because of optimizing for cost.

2.3 Challenges of Intermittent Adaptation
Thus far, adaptation has been employed implicitly in various ways in multiple systems as referenced, to meet a
particular goal (like meeting deadlines, or coalescing tasks, or scheduling tasks) considering the dynamic energy
availability caused by energy harvesting. However, there is still no explicit, systematic, and flexible approach
to recognize the dynamic energy availability, resize tasks accordingly, and in turn adjust the throughput by
minimizing the end-to-end latency required for processing the application, subject to application developer
constraints.
In particular, the challenges we introduce in this section are overlooked. A summary of the state-of-the-art

from this perspective is presented in Table 1.

C1- Estimating the Energy Environment. The practicality of deciding when to adapt is important and ignored.
It is hard to estimate the overall availability of energy in an environment, much less predict future energy, even for
repetitive harvesting situations, since intermittent devices are operating on the margins of energy, small changes
could mean big differences for static tasks. Understanding energy availability in the deployment environment,
as well as its volatility, is, however a key tool for developers to provide the best quality of service under
varying energy availability. While every environment displays different "modes" or "trends" in every energy
harvesting [4] (i.e. diurnal shifts, activity based kinetic harvesters, RF harvesting changing based on distance),
finding a general method to discern the energy environment is challenging because of the diversity of devices.
Practically, implementing things like max power point tracking and advanced circuitry and computation to record
and analyze trends in the energy harvesting environment requires significant energy, space, and time. These
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methods also are not power failure resilient, meaning that holes in the data from power failures could lead to
incorrect assumptions about the energy harvesting environment.

C2- Configurable/Flexible Adaptation. Responding to energy availability should be configurable in order to
provide flexibility to the programmer. This is useful for introducing different strategies to mitigate task starvation
and increase system availability. The when or what to adapt (or both) are generally not configurable, and are
rigid in the specification of the application that will be executed by the existing runtimes [58, 59]. For useful
and flexible adaptation, the programmer should have freedom to change (or not) any task or task variable, at
once or in sequence. For instance, rather than degrading one variable, i.e. number of samples, the programmer
can prefer an adaptation scheme where the number of samples can be increased but the parameter that relates
with the transmission power of the radio can be decreased. Different applications require different adaptation
strategies at different energy availability. As an another example, many sensing applications can be seen as being
composed of a sense -> compute -> send loop. According to the energy level, different adaptation strategies
can be more appropriate [67]. In high-energy mode, the application can perform sense data - send all data
type execution—without any inference. During this mode, only the number of samples can be decreased up to a
pre-defined value or/and the transmission power level of the radio can be adjusted. When the energy is moderate,
the application can switch to sense + filter/compress + send data type execution. During this mode, fine
grained adaptation can be supported via decreasing the number of samples, filtering out data, etc. In low-energy
mode, the application can switch to sense - infer - send inference type execution. Providing a framework for
enabling this broad array of adaptation techniques is challening.

C3- Task Starvation.An intermittent program can be composed of several threads of computation with different
energy requirements and priorities [80]. The assignment of the priorities to the thread of executions should
reflect the criticality as well as timeliness of the computation—but it is not enough to prevent task starvation. In
general, the rate at which the data is received and the rate at which it is being processed should match, in order to
provide a reasonable quality of service with respect to each level of energy availability. When the stored energy is
high; i.e. the capacitor is full, it can be the best time to execute a thread with high energy demand, such as sensor
sampling. If the corresponding thread has lower priority than the others at that time, it will not execute and most
likely it will starve. On the other hand, if the environmental energy is low, consuming the stored energy fast will
prolong the recharge time and in turn the other low-priority threads that are waiting. Degrading the task and in
turn thread sizes in a priority-based scheduling environment might prevent task starvation and create more room
to execute lower priority tasks when the incoming environmental energy is low. However, by design, events
have higher priority than tasks in many systems, e.g. in [58], to meet event deadlines. Events might consume the
whole energy in the energy storage, e.g. audio sampling, that prevents the corresponding tasks from processing
the event data, e.g. FFT computation—that leads to task starvation. Overcoming this task starvation challenge
requires an intermittent program to adapt greedily with respect to the energy environment in order to provide a
quality of service for each possible energy availability scenario, even with the risk of missing event deadlines.

C4- Too Many Design Choices. The flip side of the flexibility coin is that having numerous options gives
decision fatigue, and more importantly, obscures what the difference in performance will be from different
selections. All adaptive systems “bake in” the signals they use to adapt (i.e., off time for ePerceptive [65] or voltage
measurements for most other systems). When these are hardcoded, the decision is easy, but the outcome may not
be ideal. On the other hand, when there is more flexibility that allows the use of many signals and adaptation
strategies, it might be hard to figure out the best combination for the best application performance (which can be
user-defined).
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Fig. 3. Overview of our REHASH framework for heuristic adaptation. The hardware measures signals of the state of the
energy harvesting environment such as on-time, off-time, task count, and recent events. A developer-defined heuristic function
takes these signals in a logic equation that decides whether to adapt up (increasing energy use) or degrade performance
(decrease energy use). The heuristic function embodies the developers application goals. The next adapted task replica is
chosen, while the task scheduler obliviously executes the next (adapted) task.

3 REHASH: HEURISTIC ADAPTATION FRAMEWORK
We now provide a framework design for adaptation in task-based intermittent systems. The objective of our
framework, REHASH, is to enable the development of intermittent applications that can respond to dynamic
energy availability and provide the best quality of service. One of the main features of REHASH is employing
heuristic adaptation, which uses signals derived from intermittent execution caused by energy arrivals, and
dynamic energy availability in the environment—see Fig. 3. Based on the signals, REHASH uses a preset or
developer-defined heuristic function to estimate the current energy availability of the environment with low
overhead. The output of the heuristic function gives the adapt-up or adapt-down decision. Based on the adapt-up
or adapt-down decision, REHASH task scheduler triggers the adaptation strategy that implements the necessary
task upgrade/degrade operation accordingly, taking into account the various knobs that a developer has stated are
allowed to be adapted. Then, the task scheduler executes the next (adapted) task—ensuring the forward progress
of the computation meanwhile responding to the energy dynamics. Application developers have the domain
knowledge to specify an adaptation strategy, which will guide how tasks change based on the up/down signal.
Developers choose the heuristic signals that inform adaptation based on the hardware capability and application
constraints.

Goals/Design Features. REHASH aims at enabling adaptation for intermittent systems in four key ways:
(1) Portable energy approximation: It is difficult to provide a general model to estimate energy consumption

and harvesting, considering a variety of different hardware and energy harvesting circuitry. Heuristic
adaptation provides a general and portable way to estimate energy availability and make adaptation
decisions.

(2) Many signals: REHASH allows the selection and integration of many signals for adaptation. These signals
can be inputs into a transform to account for history; for example by using functions like min/max/aver-
age/EWMA to get the best decision for the adaptation.
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(3) Many knobs: REHASH allows the programmer to select among many "knobs" to change based on en-
ergy availability. These knobs include sampling rates, transmit power, neural network depth, and even
configuration of peripherals.

(4) Flexible and fine-grained adaptation constructs and strategy: REHASH allows the programmer to
control overall adaptation strategy, including the type and level of code degradation, the particular tasks to
adapt or not, and the signals to trigger adaptation. When, where, and how to adapt (or not) is completely
controlled by the programmer. REHASH is meant to be a super-set of the various adaptive themes explored
in intermittent computing, giving the developer freedom to fine-tune adaptation to a specific application.

3.1 Signals: Tracking the Energy Dynamics

REHASH Framework— signals: def. measurable application based phenomena that exhibit proportional
change in response to the energy harvesting environment changing.

Before a system can adapt, it has to have some reliable mechanism for understanding the environment. As shown
in Table 1, some systems have used the amount of time a device is off between as a proxy for the energy richness
of the environment [65]. Other systems use the number of tasks executed, or the measured voltage on the supply
capacitor. These are signals of the environment that give the battery-free device some conception of the state of
the outside world, and some ability to predict the future energy available.

Maximum Harvestable Power (MPP)

On-Time

O!-Time

Task Count

Heuristic Signals

Fig. 4. This figure shows that signals in our framework track
the maximum power harvestable from an energy environment,
providing a useful estimate of energy availability trends. The
signal values are drawn from an execution of the MNIST ma-
chine learning application on the energy environment.

REHASH relies on these adaptation signals (shown
in Fig. 4). Each of which is a statistical measure or
count of the last execution before a power failure.
These signals change in response to the energy har-
vesting environment and the energy demand of the
application. Many adaptation signals can be integrated
into our REHASH framework. Obviously, the length
of the time interval from the time the capacitor is fully
charged and the device starts operating to the time the
device fails, i.e. on-time, can be exploited as an adap-
tation signal. On-time captures the relation between
the incoming energy rate and the energy demand of
the application. If the incoming energy is high or the
tasks of the application requires less energy to execute,
one can expect longer on time. The inverse is true for
off-time, which is a measure of how long does it take to
charge an empty capacitor—if short, energy is high. A
similar adaptation signal can be task count with more
tasks completed meaning more energy available.
Another approach for adaptation signals is direct

measurement of the energy harvesting medium. However, this is a burdensome, and in many cases infeasible
method for energy harvesting environment estimation for intermittent systems. Using indirect adaptation signals
has multiple advantages compared to implementing a voltage or current measurement circuit on the device. Most
importantly, a single point IV measurement (as demonstrated in Ekho [27] and shown in any datasheet for solar
panels) does not represent the state of the energy harvesting environment, it is merely a point on an IV curve
that is influenced by the solar panel characteristics and the charge on the capacitor. Conducting max power
point tracking [21], where a dedicated circuit will dynamically change the point load on the harvester and then
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measure the change, to extract the maximum power from a harvester, is a complex task (even modern ICs like
Texas Instruments BQ25570 [37] only update MPPT every 16 seconds). Keeping track of statistic and trends of
the MPP over time would be more indicative of the energy harvesting environment. However, that has a high
burden in terms of power, circuitry, and compute. More confounding, even if the MPP was able to be tracked, it
can not be tracked while the device is off / in power failure. As shown in Figure 4, the REHASH Framework signals
track MPP, are maintained through power failures, and are much more lightweight, requiring low or no extra
circuitry and little to no computation to derive.

3.2 Heuristic Function: When to Adapt

REHASH Framework— heuristic function: def. a developer-defined logic statement that takes an equation
composed of measured signals and calculates a binary outcome, i.e. adapt up, or adapt down. The outcome
of the heuristic function decides when to adapt tasks and knobs.

As depicted in Fig. 3, REHASH heuristic is a function, denoted by 𝑓 (𝑠1, . . . , 𝑠𝑛), with a binary output: either
"adapt-up" (0) or "adapt-down" (1). The inputs of the heuristic function are the adaptation signals, denoted by 𝑠 in
this figure. REHASH can accept any heuristic function, that can use many or only one adaptation signal in order
to output the adaptation decision, e.g. only on-time or on-time and the number of task completions. REHASH
also integrates a measure of past history—that holds the values of the adaptation signal in the previous active
time computation, before the most recent power failure. Integrating more history means taking into account the
signal values of previous active executions. The heuristic function can be any equation or relation expressed in a
mathematical form (with the constraint that excessively complicated heuristics will take longer to compute, and
may become less interpretable).

As an example, a heuristic function can be created that compare the latest measured value of a single adaptation
signal, e.g. the task completion count with the average value of the corresponding adaptation signal stored in
the history. If the current value of the signal is less than the average, the application should adapt down (for
example decrease the sampling count), since the trend is that less active time and fewer tasks are completed,
which likely means the energy environment is trending low. Otherwise, the application should adapt up, since the
time between power failures is increasing, so more energy is available to do more tasks and stay on for longer.

3.3 Knobs: What to Adapt

REHASH Framework— knobs or adaptive variables: def. application specific variables controlling sensor
sampling, peripheral selection, communication, and compute, that can be tuned to use more/less energy
based on the outcome of the heuristic function.

REHASH exposes multiple knobs to the heuristic adaptation functions, so that these knobs can be tuned
in order to provide the best quality of service. Battery-free energy-harvesting devices support a wide variety
of applications, ranging from measuring body vitals: heartbeat, activity recognition, gait monitoring etc.; to
managing built environments: sensing temperature, humidity, proximity, lighting conditions, etc.; and many
more. These devices employ multiple sensors to measure desired facet(s); use different filtering algorithms to
process sensor data; encode/encrypt this data for user’s privacy; send it to a server for further processing or
actuation, and repeat the whole cycle again. A typical control flow graph of battery-free sensing applications is
shown in Fig. 5.
For the sake of simplicity, we broadly classify all peripheral and sensing related operations such as sensor

selection, sensing parameters (e.g. data rate), radio configuration etc., into the hardware layer; and all the compute:
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Taxonomy of Adaptation 
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Fig. 5. Typical control flow graph of sensing is shown on the
left; at each stage, energy-aware adaptation can be viewed
from different dimensions: peripheral selection, sensor sam-
pling, etc. For each dimension, there are different knobs for
adaptation. For instance, while sensing, sampling rate may
be adapted based on available energy.

Table 2. Survey of intermittent computing applications with
knobs for adaptation listed.

Applications Sensors Adapt. Knobs

Activity Recognition [12, 55] Accelerometer SS, CC, CV
Green House Monitoring [30] Temp, Humid, L.Wetness PS, SS, CV
Condition Monitoring [80] Micro., Accelerometer SS, CC

Correlated Sensing & Report [14] Magneto., Proximity SS
Cuckoo Filter [56, 57] – CC

Air Quality Learning [50] Temp, Light SS, CC
Visual Sensing [40] Camera CC
Bitcount [56, 57] – CC

Acoustic Sensing [40] Microphone SS, CC
Blowfish Encryption [56, 57] – CC

Vibration Learning [50] Accelerometer SS, CC
RSA Encryption [43, 69] – CC

Visual Sensing-Camaroptera [67] Camera CC, CV
Kalman Filter [9] – CC
CRC [69, 78] – CC

filtration, encryption, encoding, machine learning algorithms, etc., into the software layer. These are different
dimensions that help visualizing adaptation in a hierarchical way. With these dimensions defined, REHASH can
be used to employ several adaptation strategies that can tune different knobs at each stage of the execution.

To ground our taxonomy in the real world, we conducted a literature review and outlined all the intermittent
computing applications and their possible adaptation strategies in Table 2.

Peripheral Selection (PS). Typically, sensing is done periodically or by polling. When a multi-sensor device is
in high energy mode, all the sensors can be sampled regularly. However, if energy availability is lower, routine
sampling of all sensors would take much longer, causing delay in processing and actuation, and thus jeopardizing
the whole sensing cycle. We propose adaptation of sensing facets in such a scenario by turning some sensors off,
in order to give the best possible outcome with limited energy. For instance, an infant monitoring application
uses an IMU which consists of three internal sensors gyroscope, accelerometer, and Hall-effect magnetic sensor.
In low energy mode, instead of sampling all three sensors, we can gracefully compromise on gyroscope and
Hall-effect magnetic sensors as accelerometer data is more crucial to infant monitoring, reducing energy burden
and increasing throughput.

Sensor Sampling (SS). Another knob is the sampling rate and resolution. A sensed value may sometime be
erroneous, due to unknown internal faults or extreme weather conditions. To overcome this problem, applications
usually gather multiple samples, then exhaustively compute on collected samples or calculate their average
before making decisions. As an example, a Correlated Sensing and Reporting application [14] collects N (32)
magnetometer samples to keep track of magnet movement, where N is a fixed number and is not changed at the
run-time. Such a static execution often leads to non-termination. By dynamically adjusting sampling rate and
choosing different resolution with varying incoming energy, applications can be made more adaptive with their
limited energy budgets.
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Fig. 6. For a machine vision application, two different adaptation strategies are shown: changing number of pixels used for
classification (by cropping the image), and changing number of classes recognized. In the former, fewer pixels are used when
energy decreases, which reduces accuracy across the board, in the latter, some classes are thrown out completely, which
maintains accuracy by using all pixels, but loses distinguishability between objects. While both strategies are likely better
than not adapting, the choice of how to adapt greatly depends on the application programmers goals.

Compute Complexity (CC). Computational load can sometimes be decreased at a loss of accuracy. As machine
learning goes beyond the edge [25, 40, 50], computational load increases. Adapting compute complexity, computing
over fewer samples, perforating loops, pruning layer or neurons in a network, early exiting the network [40, 65, 79],
may compromise on the accuracy, but may make better use of available energy with at least some application
quality.

Communication Variables (CV). Sending a packet has a high energy cost. Adaptation via network size, Low
Power Listening (LPL) and other parameters provides options. Instead of communicating with the whole network,
and sending/ receiving multiple packets, a sensor could decide to communicate with a small portion of the
network (reduce transmit power) or send one inference packet instead of sending all data [67], reducing network
traffic and thus overall energy consumption.

3.4 Bringing it all Together, Adaptation Strategy and "How to Adapt"
Finally, the application developers can take the chosen signals, the heuristic function that takes transformed
adaptation signals to make an adapt up or down decision, the knobs and variables that they wants to change, and
then designate tasks that will be adapted within the program. At this point, the programmer is merely making
connections ("glue" code) between the heuristic adaptation approach and the tasks themselves. In addition to two
potential AR adaptation strategies mentioned earlier (shown in Fig. 2), here, two strategies are shown in Fig. 6 for
a machine learning application, one which reduces pixels analyzed, the other reduces classes recognized. Only
the developer can make that choice.
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4 USER EXPLORATION OF ADAPTATION: FORMALIZATION AND TOOLING
Having a mechanism and framework to adapt is not enough to enable building of robust intermittent computing
applications. In this section we describe a new tool that complements the REHASH runtime system and heuristic
adaptation framework. The tool allows a user to explore the impact of design decisions they make on program
operation and quality of application– including changing adaptation strategies, tasks, or energy environment. The
simulation tool called REHASH-explorer, is built on a formalization of the mechanisms of heuristic adaptation,
allowing for a hardware free exploration of adaptation. The previous sections provided a informal description and
motivation for the heuristics of our framework, and how all the pieces fit together. Here, we formalize our model
of adaptation bottom up, from energy models, signals, and task graph based programs, use these as components
to describe heuristics, and then integrate this modeling into a simulation environment that allows for users to
explore and compare different adaptation schemes quickly and easily.

4.1 Energy Harvesting and Storage Model.
Adaptation adjusts the throughput of the system by considering the available energy, which is changing according
to environmental dynamics. The objective of adaptation is to maximize system availability, by minimizing the
end-to-end latency required for processing the tasks of the application. Therefore, how fast the system is charged
by considering the rate of incoming energy and how fast the energy is consumed by considering the rate of
energy consumption are key points.

An energy harvester’s power output is not constant, but depends on the load on the harvester. This relationship
between the harvester current 𝐼 and the harvester voltage 𝑉 , is captured by an IV curve which represents the
state of possible power outputs at a point in time. Solar panel IV curves are presented in datasheets and have
a distinct shape with a "knee" where the most power can be harvested. We denote the input power from the
environment at time 𝑡 as 𝑃𝑖𝑛 (𝑡). Based on the received power, the 𝐼𝑉 function 𝜆 of the harvester can be defined as
𝐼𝐸𝐻 (𝑡) = 𝜆(𝑉𝐸𝐻 (𝑡), 𝑃𝑖𝑛 (𝑡)) where𝑉𝐸𝐻 denotes the voltage provided by the harvester and 𝐼𝐸𝐻 is the corresponding
current that is dependent on the 𝐼𝑉 characteristics of the harvester.
Let 𝑅𝐶 be the time constant of the energy storage capacitor. The voltage across the energy storage capacitor,

being charged by the environmental energy, at a time instant 𝑡0 + Δ𝑡 can be denoted as:

𝑉𝑐𝑎𝑝 (𝑡0 + Δ𝑡) = 𝑉𝑐𝑎𝑝 (𝑡0) +𝑉𝐸𝐻 (1 − 𝑒−Δ𝑡/𝑅𝐶 ) (1)

where we assumed that 𝑉𝐸𝐻 (𝑡) = 𝑉𝐸𝐻 is constant within the corresponding interval. Similarly, the harvested
energy stored in the capacitor in the time interval Δ𝑡 is denoted by:

𝐸ℎ𝑎𝑟𝑣 (Δ𝑡) = 1/2𝐶 (𝑉𝑐𝑎𝑝 (𝑡0 + Δ𝑡)2 −𝑉𝑐𝑎𝑝 (𝑡0)2).

4.2 Application Model.
An intermittent application can be represented by a directed graph G = (𝑉 , 𝐸), where the vertex set 𝑉 = {𝑣𝑖 |𝑖 =
1, . . . , 𝑁 } represents the set of 𝑁 tasks forming the application and the edge set 𝐸 ⊂ 𝑉𝑥𝑉 represents the control
flow among these tasks. Each task 𝑣𝑖 has 𝑒𝑖 , that represents the energy requirements to execute the task. We
assume that the energy of a task is not fixed and it can shrink or grow depending on the adaptation strategy
employed. For example, by reducing the number of samples captured in a task. For each task 𝑣𝑖 ∈ 𝑉 , we assume
that:

∀𝑡 ∈ 𝑉 : 𝑒𝑖 ∈ [𝑒𝑚𝑖𝑛
𝑖 , 𝑒𝑚𝑎𝑥

𝑖 ],
where 𝑒𝑚𝑖𝑛

𝑖 denotes the minimum energy and 𝑒𝑚𝑎𝑥
𝑖 denotes the maximum energy to execute task 𝑣𝑖 at different

adaptation levels. At the minimum programmer defined adaptation level, for example, a task might only sample a
temperature sensor one time, the energy cost of the task is therefore 𝑒𝑚𝑖𝑛

𝑖 . At the highest programmer defined
level, a temperature sensor might be sampled ten times and averaged, to have a more accurate reading. the energy
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Fig. 7. REHASH-explorer screenshot. A selected application is rendered on the screen where the task graph of the program
is shown. The sliders along the right-hand side of the window allow the level of adaptation by changing programmer defined
adaptive variables (in this case skipping pixels of an image). The bottom left area of the screen displays the energy harvesting
environment selected. Also shown is the accuracy of the image classified which is varying with changing harvested energy;
markers (red or blue) show the time when classification is completed. The bottom right, summary statistics on the outcome
of the simulation with the given task graph, adaptive variables, and energy environment. To view a full-size interactive demo
of REHASH-explorer, please visit https://adaptationprofiler.github.io/adaptation-profiler/.

cost of the task is then 𝑒𝑚𝑎𝑥
𝑖 . This is further represented by a step-wise function for mapping the energy of a task

to the current adaptation level 𝑞.

𝑒
𝑞

𝑖
= 𝑞 ∗ 𝑒𝑚𝑖𝑛

𝑖

This mechanism is shown in Figure 3, where lower energy cost task replicas are executed when the adaptation
level (𝑞) changes. Moreover, 𝑡𝑖 denotes the time it takes to execute task 𝑣𝑖 having 𝑒𝑖 energy demand. Assume that
task 𝑣𝑖 is the current task to be executed at time 𝑡0. The energy in the capacitor at time 𝑡0 + 𝑡𝑖 is denoted by:

𝐸𝑐𝑎𝑝 (𝑡0 + 𝑡𝑖 ) = 𝐸𝑐𝑎𝑝 (𝑡0) + 𝐸ℎ𝑎𝑟𝑣 (𝑡𝑖 ) − 𝑒𝑖
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The voltage on the capacitor at time 𝑡𝑖 is then denoted as a function of the energy and the size of the capacitor 𝐶 :

𝑉𝑐𝑎𝑝 (𝑡0 + 𝑡𝑖 ) =
√
2
1
𝐶
𝐸𝑐𝑎𝑝 (𝑡0 + 𝑡𝑖 )

If 𝑉𝑐𝑎𝑝 (𝑡0 + 𝑡𝑖 ) is lower than the operating voltage of the microcontroller running the application, the device dies
before it can complete the task. In this case, the task must be retried when the device turns back on. Otherwise,
the next task in the control flow is executed.

4.3 Signals Model.
Signals are physical or application based phenomena that change in response to the energy harvesting envi-
ronment. These are often directly measured in hardware, or are application based statistics. The set of signals,
denoted by the signal set S, capture the dynamics of the energy harvesting environment. As an example, the
time spent for charging the capacitor, denoted by 𝑠𝑜 𝑓 𝑓 , is highly related with the input voltage as indicated by
equation (1). Besides, on time, represented by 𝑠𝑜𝑛 , indicates the energy requirements of the application. More
specifically, if 𝑉 ∗ ⊂ 𝑉 denotes the set of tasks that were executed during a power cycle, one can calculate on
time as 𝑠𝑜𝑛 =

∑
𝑣𝑖 ∈𝑉 ∗ 𝑡𝑖 where 𝑡𝑖 denotes the execution time of the corresponding task 𝑣𝑖 . More signals can be

produced by capturing other physical or application based phenomena that change in response to the energy
harvesting environment, such as 𝑠𝑡𝑎𝑠𝑘 = |𝑉 ∗ | which denotes the number of tasks that were executed during the
corresponding power cycle. These signals form the components of the heuristic, that is used to decide when to
adapt.

4.4 Heuristics Model
Heuristics are logic statements composed of a mathematical combination of signals, that compute an outcome
of either "adapt up" or "adapt down". The heuristic equation is an approximation of the energy harvesting
environment. As shown visually in Figure 4, some signals will work better than others for predicting future
energy for different types of applications, energy harvesting environments, or hardware platforms. Heuristics
allow for combining signals to enable better predictive quality for heuristic adaptation. The outcome of the
heuristic changes the value of the adaptive variables (i.e. number of samples to collect) which changes the energy
of the task 𝑒𝑖 .
A heuristic function 𝑓 takes signals 𝑠0, ..., 𝑠𝑁 ∈ S as a parameter and outputs a binary value denoting either

"adapt-up" (0) or "adapt-down" (1). Heuristic functions perform statistical/mathematical operations on the signals
to infer the future energy availability of the environment based on past observations. An adaptation algorithm
A considers the heuristics to look at the future and adjusts the task sizes to fit the energy requirements of the
application into the harvested energy. In other words, this algorithm tries to provide a best effort in order to match
the rate of incoming energy to the rate of energy consumption. As a heuristic predicting a complex situation, A
can have a non-perfect prediction about the energy that will be harvested in the upcoming time interval using the
heuristic functions. For an example, shown below is the off time heuristic function. This function takes as input
the last 𝑛 values of the s_off signal. The heuristic takes the average of the last 𝑛 − 1 power failures time length, if
the last measured off time is less than the history, then power failure times are decreasing, and the energy must
be increasing. The inverse happens for adapting down. We include a hysteresis value, 𝜖 to add hysteresis to the
adaptation activations. Essentially, if the power failure time is decreasing then we adapt up.
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𝑓 (s_off ) =


adapt_up, if (s_off 𝑛 − 𝜖) < 1

𝑛

𝑛−1∑
𝑖=1

s_off 𝑖

adapt_down, if (s_off 𝑛 + 𝜖) > 1
𝑛

𝑛−1∑
𝑖=1

s_off 𝑖

do_nothing, otherwise

(2)

This is just one example of a heuristic function that a user can create. The adapt_up and adapt_down equations can
be significantly different, for example if upgrading performance should be more conservative than downgrading.
Multiple signals and varying lengths of history can also be used to make the heuristic function more dynamic.

4.5 REHASH-explorer: User Exploration of Adaptation via Simulation
From this formalization of the energy harvesting environment, application, signals, and heuristics, we can inform a
user facing simulation platform, which we call REHASH-explorer. The knobs and potential inputs to an adaptive
intermittent computing program are vast, making it hard to see broad trends or draw out conclusions from point
based testing on real hardware. For this reason a simulation platform that can give broad strokes of how adaptation
strategies work can be very helpful. The REHASH-explorer tool lets a user understand and explore the tradeoffs
in different adaptation strategies and illuminates the interplay of energy harvesting environments, adaptation,
and application tasks. We have developed the tool as a browser application, to facilitate straightforward, multi-
platform, and frustration-free installation and deployment. A screenshot of the REHASH-explorer is shown in
Figure 7.

The tool is a step based simulation, loosely modeled after MSPSIM [20] and the Mementos [69] and SIREN [22]
additions to it which allowed for instruction level simulation, but aware of IV surfaces. Instead of granular
instruction level simulation, which is architecture dependent, we focus on coarser grained task level simulation,
which allows for any architecture and fits within our formalization. Based on hardware profiling, the minimum
and maximum energy requirements of each of the tasks can be obtained. We assume that each task 𝑣𝑖 has a
set of knobs denoted by K𝑖 . As an example, these knobs can be the number of samples taken and iterations
performed within a task. Based on the heuristics,A adjusts the knobs to adapt the task sizes using a coarse-grained
approximation of the amount of energy harvested in the future.

REHASH-explorer tracks statistics throughout the execution of a particular configuration of the application,
that will provide data and context for the user to then determine if the configuration under test was successful,
or better than other configurations. These statistics build off the previous formalizing combining all the factors of
the program and environment. They are:

(1) Total energy available.
(2) Total energy consumed.
(3) Number of tasks executed.
(4) Number of app completions.
(5) Number of power failures.
(6) Average accuracy of inferences performed.

With these results, the user can make a judgement call on the performance of the application and adaptation
strategy, continue to tweak the heuristic function and use of signals, and compare and evaluate alternative energy
harvesting environments or slightly changed tasks. This method enables a broad exploration of the space of
adaptation, before any hardware has to be deployed, allowing for users to take advantage of the flexibility of the
REHASH framework and have some level of understanding of all the tradeoffs.
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4.6 Caveats
This formalization of heuristic adaptation, as well as the simulation platform, has some caveats to keep in mind
when making decisions based on the tool outcomes.

Simulation Accuracy. Because the simulation works at a coarse, task level, and uses a simplified model of the
actual physics happening in the real hardware, accuracy will not be comparable to a real world device. Even
minor changes in capacitance would have an impact on the statistics mentioned. However, this is not the point;
as the tool is meant to compare the range of configurations to each other, and understand the proportion of change
as configuration variables are changed. A perfect accuracy (for example with energy consumed) is not required or
really relevant, as what is more relevant is what is the magnitude of the difference in energy consumed between
two configurations.

Minimum Quality of Application. Let 𝑃 = 𝑣0, ..., 𝑣𝑁 be a path in graph G and let 𝑒𝑃 be the sum of the energy
requirements of the tasks along this path. Let us denote P as the set of all possible paths whose starting node
is the start task and end node is the end task of the application. Let the maximum quality, and in turn, energy
consumption of the application be 𝑒𝑚𝑎𝑥

𝑎𝑝𝑝 = max𝑃 ∈P{𝑒𝑃 } where for each 𝑣𝑖 ∈ 𝑃 it holds that 𝑒𝑖 = 𝑒𝑚𝑎𝑥
𝑖 . In other

words, we select the maximum energy consumption for these tasks. Similarly, the minimum quality of the
application is denoted by 𝑒𝑚𝑖𝑛

𝑎𝑝𝑝 where for each 𝑣𝑖 ∈ 𝑃 it holds that 𝑒𝑖 = 𝑒𝑚𝑖𝑛
𝑖 . Algorithm A performs adaptation to

execute applications with best available quality. It is worth mentioning that, the application quality will not be
degraded below the minimum quality. If energy does not exist to execute the application at minimum quality as
defined by the user, then the application will never complete.

5 REHASH: RUNTIME AND TOOL IMPLEMENTATION
We now present the implementation details of REHASH, the first runtime for intermittently powered devices
that provides explicit support for energy-aware and adaptive computing. This represents an instantiation of the
REHASH framework, and we expect other instantiations (for other classes of energy harvesting devices) to follow.
The architecture of REHASH runtime is shown in Fig. 9. REHASH is built on state-of-the-art InK [80] runtime
system. With InK, developers specify tasks (which sense, compute, infer, or communicate) and link them together
to establish control flow. Multiple tasks can be wrapped into a thread, and threads can be given priority levels.
InK schedules these tasks and maintains memory consistency and progress of computation despite power failures.
Our work provides the necessary functions to allow for adaptation, including signals, heuristics, and adaptation
strategy constructs. By building applications in both InK and REHASH we can have a baseline comparison to
a well established static (non-adaptive) runtime and programming model. We expect that any runtime system
(even checkpoint based) could make use of the adaptive functions and methods described here.

5.1 REHASH Signals and Heuristic Function
We capture the adaptation signals from hardware and software, to enable heuristic adaptation. We consider
three adaptation signals and recognize that these could be combined to form heuristic functions, along with
transformations.

(1) On-Time. The on-time or active time is the measured time after recovering from a power failure (when
sensing or computing starts) till the start of next power failure. This time can change dramatically based on the
energy availability, as more energy means fewer power failures and longer on time.

(2) Off-Time. The off-time is the duration of time from a power failure to the successive recovery. This signal is
usually (in practice) much longer than the on-time, as it takes longer to harvest energy than to spend it. This
time can be captured using an RTC, or Remanence Based Timekeeper [34, 80].
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1 /* adaptive variables. */
2 __knob(int numSamples = 10);
3
4 /* task -shared variables. */
5 __shared(int samples [10]; int i;);
6
7 /* adapts variables considering the heuristics */
8 __ADAPT_UP{
9 /* increase the number of samples */
10 __TUNE_UP(numSamples , STEP_SIZE);
11 }
12
13 __ADAPT_DOWN{
14 /* decrease the number of samples */
15 __TUNE_DOWN(numSamples , STEP_SIZE);
16 }
17
18 /* an adaptive task */
19 TASK(Sense){
20 /* sample temperature sensor */
21 int read = __sample_temp ();
22 /* samples[i] = read */
23 __SET(samples[__GET(i)],read);
24 /* increment i */
25 __SET(i,__GET(i)+1);
26
27 /* check if number of samples taken */
28 if(__GET(i) < __READ_KNOB(numSamples)){
29 /* sample again */
30 NEXT(Sense);
31 }
32 else{
33 /* next task -> compress samples */
34 NEXT(Compress);
35 }
36
37 }

Fig. 8. Overview of REHASH adaptation language constructs. The __knob keyword is used to define adaptive variables whose
value can be modified only by __TUNE_UP and __TUNE_DOWN methods. __READ_KNOB returns the value of the corresponding
adaptive variable.

(3) Task-Count. The task count is the number of tasks completed in the previous power cycle of the device.
These tasks, defined by the developer, can be of any length or size. In general, as more energy becomes available
in the environment, more tasks are expected to be completed (not accounting for energy differentials in tasks, for
example, a task doing computation versus a task sending a packet on the radio).

While these signals we consider intuitively useful, we expect many other signals could be integrated into this
heuristic adaptation framework. Importantly the signals track the maximum power harvestable in an energy
environment, as shown in Fig. 4. This is important because this means these signals are information rich in
estimating the current energy availability, while being very lightweight to gather.

Heuristic Function. Our framework maintains a history of these signals, which is developer tunable. The signal
values are recalculated and then added to the history at each power failure. The heuristic function is defined
in a single C/C++ file included in the runtime. This function can be rewritten in plain C/C++ and has access to
all signals and their histories and all standard math libraries to form a interesting and useful heuristic function.
The current implementation of the heuristic function used for the paper is based on one signal value selected
by the programmer, see Equation 2 for the 𝑠𝑜 𝑓 𝑓 (off time) based heuristic function. In this case, the heuristic
function takes the average value of the signal using the history and compares the average with the current value
of the signal in order to make an adapt up/down decision. The REHASH scheduler, based on the decision of the
heuristic function, calls the necessary adaptation up and down routines described in the adaptation logic of the
application.
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Fig. 9. REHASH high level architecture. The kernel and runtime ensures progress of computation and memory consistency;
meanwhile heuristic management block collects necessary information that will be used by the application. Adaptation logic
uses the heuristics provided by the kernel and performs adaptation. We note in red the major blocks.

5.2 REHASH Language Constructs
In InK, the programmer annotates task-shared persistent variables by using __shared block, provides task
implementations by using TASK(...) and indicates control flow by NEXT(...) keywords; respectively. Since the
task-shared variables are double-buffered so that tasks become atomic, the access to these variables happens via
a __SET and __GET interface. In addition to these language constructs, REHASH provides additional keywords to
enable adaptation for applications. Fig. 8 presents a sketch application that is developed by using the language
constructs provided by REHASH runtime.

Adaptive Variables. In REHASH, the programmer annotates the persistent adaptive variables by defining them
using __knob interface. Unlike task-shared variables, these variables can only be modified by the adaptation logic
and they are read-only for the tasks. This simplifies the programming interface and removes the need for the
runtime to anticipate or inform the tasks about changes to energy environment.

Adaptation Logic. The __TUNE_UP and __TUNE_DOWN interfaces are used to modify adaptive variables. Based on
the output of the heuristic function, the REHASH scheduler calls either __ADAPT_UP or __ADAPT_DOWN routines
within the adaptation logic.

Adaptive Tasks. The tasks that are adaptive should include decision logic to make inferences by reading the
updated adaptive variables—the __READ_KNOB interface reads the value of an adaptive variable. In our example,
the adaptive SENSE task checks the value of the numSamples variable in order to sample more or to change the
control flow for compressing the sensed data.

5.3 REHASH Kernel
The general architectural overview of REHASH is presented in Fig. 9. We implemented a Heuristic Mgmt com-
ponent to measure the signals at each power cycle (or reboot). The values of these signals are maintained in
non-volatile memory by using a FIFO queue data structure that has a predefined capacity—a history of measured
signals is provided to applications. At each reboot, in the initialization steps of the REHASH kernel, the value of
the persistent timekeeper is measured and the value of the off-time is appended to the corresponding queue of
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Algorithm 1: REHASH-explorer main simulation loop.
Input :Developer configuration, 𝑇𝑎𝑠𝑘𝑠, 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡, 𝐼𝑛𝑝𝑢𝑡𝑠, 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 .
Result: Performance outcome from user configuration

1 /* Initialize and load the inputs */

2 𝑇𝑎𝑠𝑘𝑠 ← load_application()
3 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 ← load_energy_environment()
4 𝐼𝑛𝑝𝑢𝑡𝑠 ← load_user_inputs()
5 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 ← load_heuristic()
6 /* Application quality starts at lowest setting */

7 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 ← minimum
8 /* Main step-based simulation loop */

9 while 𝑡𝑖𝑚𝑒𝑠𝑖𝑚 < 𝑡𝑖𝑚𝑒𝑒𝑛𝑑 do
10 𝑃𝑜𝑤𝑒𝑟𝑒𝑛𝑣 ← 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 .get(𝑡𝑖𝑚𝑒𝑠𝑖𝑚)
11 𝑉𝑐𝑎𝑝 ← update_capacitor(𝑃𝑜𝑤𝑒𝑟𝑒𝑛𝑣,𝑉𝑐𝑎𝑝 )
12 𝑆𝑖𝑔𝑛𝑎𝑙𝑠 ← calculate_signals()
13 if 𝑉𝑐𝑎𝑝 > 𝑉𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 then
14 /* Determine the next task to execute, and the level of quality to execute at. */

15 𝑟 ← 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 .execute(𝑆𝑖𝑔𝑛𝑎𝑙𝑠)
16 if 𝑟 ≡ 𝑎𝑑𝑎𝑝𝑡_𝑢𝑝 then
17 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 ← 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 + 1
18 end if
19 if 𝑟 ≡ 𝑎𝑑𝑎𝑝𝑡_𝑑𝑜𝑤𝑛 then
20 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 ← 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 − 1
21 end if
22 𝑉𝑐𝑎𝑝 ← execute_next_task(𝑆𝑖𝑔𝑛𝑎𝑙𝑠,𝑄𝑢𝑎𝑙𝑖𝑡𝑦,𝑉𝑐𝑎𝑝 )
23 else
24 die()
25 rollback(𝑇𝑎𝑠𝑘𝑠)
26 end if
27 /* Capture performance statistics: power failures, tasks executed, etc. */

28 gather_statistics()
29 𝑡𝑖𝑚𝑒𝑠𝑖𝑚 ← (𝑡𝑖𝑚𝑒𝑠𝑖𝑚 + 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 )
30 end while
31 /* Report statistics to the user interface */

32 report_statistics()

the recovery-time (or off-time) based heuristic function. For active-time (or on-time) based heuristic functions,
a periodic timer is set to generate interrupts at regular time intervals. Upon each interrupt, the value of the
corresponding persistent variable is incremented. At each reboot, the value of this variable is multiplied with
the timer period to obtain the on time and this value is appended to the queue of the active-time heuristic. At
each task completion, a persistent variable holding the count of successfully executed tasks is incremented. The
calculation of the heuristic function as well as triggering the adaptation logic by the scheduler can be performed
either at each reboot, at the completion of the thread or application. This can be configured by the programmer.
The adaptive variables are not double-buffered since they can only be modified by the adaptation block. Therefore,
write-after-read dependencies [78] and the need for two-phase committing these variables are eliminated.
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5.4 REHASH-explorer
The simulator is a browser viewable tool. The simulation main loop is shown in Algorithm 1. The user is expected
to supply the task graph, annotated with energy and time values for the base non-adaptive case (i.e. the minimum
quality setting). These values can be generated using EnergyTrace++ as used in other works like Zygarde,
SONIC/TAILS, and others. The user is also expected to select the adaptive variables and associated tasks they
would like to use. The energy harvesting environment must be chosen, this can be gathered from the existing IV
surfaces available in the tool, or a new IV surface added. Finally, the heuristic function is either selected from
the existing functions (one of which is the history of off time, as show in Equation 2), or the user may use the
heuristic designer to create a new function using the signals available.

Main Loop and Task Execution. The main loop evaluates the state of the task execution every time step,
keeping track of the progress of the program, the current part of the energy environment, and the adaptation
settings. These all go into calculating the capacitor voltage, which determines if a task can be executed successfully
or not. Signals are captured at each time step, and are fed into the the heuristic function before any task is
executed, to inform the adaptation level. When a task is executed, the energy cost of the task, calibrated to the
adaptation level, is removed from the capacitor. If the energy cost causes the voltage on the capacitor to go below
the operating threshold, then a power failure is registered and a rollback occurs. As the simulation proceeds,
statistics are gathered to inform the user of the success/failure of the configuration under test.

User Input and Interaction. The interface allows for significant flexibility in designing a configuration for an
adaptive intermittent computing application. The user may change the heuristic function, even designing one
there self using the available signals, providing the most direct way to set an adaptation strategy. The user can
also change the adaptive variables and tasks, for example, one configuration might adapt the sensor sampling,
while another the amount of communication, these configurations can be compared against the outcomes such
as power failures and task count, to help the user decide which is better for their purpose. Finally, the user can
try the configuration on multiple energy harvesting environments (IV surfaces), which could represent indoor
and outdoor light, kinetic, thermal, RFID, something as fine grained as solar harvesting in a specific location and
time, or any other energy harvesting scenario.

Built With. We built the simulator platform using JavaScript and web based tools, to allow for the fastest
deployment and use by programmers. Often, it takes significant time and expertise to get intermittent computing
software, hardware, and tools running. We skip the install burden by enabling everything in the browser. We
used ReactJS, with JavaScript libraries based on KaTeX for rendering and evaluating heuristic equations. These
functions can be written in regular mathematical expression format and are converted on the fly in the web app
to a rendered picture (as shown) and an object which can be evaluated for a output (adapt up or down) within
the simulation script.

5.5 Developing Applications with REHASH and REHASH-explorer
The REHASH approach gives the flexibility to write any kind of adaptive intermittent applications and the tools
to understand the impact of configuration and adaptation decisions before deployment. We now describe how a
user would go about building an application leveraging the REHASH runtime system and the fine tuning the
application using the REHASH-explorer. The workflow is shown in Figure 10. We also provide some rules
of thumb on writing adaptive applications. The first duty of the programmer is to provide a task division and
annotating the shared variables among tasks (just as in InK, Alpaca, and every other Task based runtime). After
this, the programmer will:
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Fig. 10. Typical workflow for a developer writing applications with REHASH and REHASH-explorer.

(1) Profile Tasks for the energy costs, and execution time, these values are used by the tool. These profiles
are at the base level (or most degraded) quality— REHASH-explorer will use this baseline to calculate
upgraded tasks energy cost.

(2) Identify the signals that are supported by the specific hardware platform or software. For example, not
all hardware platforms will have an remanence based timekeeper which allows for measuring off-time,
however, every platform will have a way to measure on-time using built in timers.

(3) Identify the adaptable parts of the program, based on the taxonomy given in Fig. 5. This means
selecting tasks, and the adaptive variable (knobs) that will be exposed to the tool for simulation.

(4) Load into REHASH-explorer the built application task graph, adaptive variables, and task profile.
(5) Pick the set of energy environments to test on from the selection available or a custom set.
(6) Choose the heuristic function, or build one using the heuristic designer.
(7) Explore the configuration space by changing the sliders for the adaptive variables and seeing the change

in statistics (i.e. power failure, tasks complete) using the tool until a suitable, robust version of the program
is found that satisfies the programmer constraints and definitions of quality.

(8) Iterate or finalize the development. The programmer can go back to any previous point and tweak the
system inputs and then explore the tradeoff space. Eventually the program is finalized, installed on a real
device, and deployed.

Overall, this adaptive approach is not much more demanding than typical task based programs, but can provide
a mechanism where applications are much less brittle when energy environments have larger dynamic changes,
and will give confidence and more understanding via user exploration of the adaptation schemes.

6 APPLICATIONS
We experiment with three applications to demonstrate and test the heuristic adaptation approach: Activity
Recognition (AR), Greenhousemonitoring (GHM), and amachine learning application that recognizes handwritten
digits from MNIST [48] (ML) in 8KB of memory. For each application we developed a baseline, non-adaptive
version for the unmodified InK runtime [80], then ported that application to REHASH. This provides a solid
baseline comparison for understanding the benefits of the adaptive version of the corresponding application over
that of the non-adaptive version. Below we provide the adaptation strategies used for each application.
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Fig. 11. Two different adaptation strategies for MNIST image classification application, and their effect on execution time is
shown. When changing the number of classes recognized (on the left), the behavior of accuracy and time is linear as the
dataset has almost equal number of images for each digit. When changing the number of pixels used for classification (by
cropping the image from the borders), the rate of change in accuracy is smaller than the rate of change in execution time.
This is because most of the information in MNIST dataset lies in the middle pixels, so cropping the image from borders does
not affect accuracy much.

6.1 Activity Recognition (AR)
AR is a human physical activity classification application. During high energy execution (send-all mode), AR
collects 16 accelerometer samples, buffers into a sliding window and sends all the data to a base-station that
classifies it to five activities using a complex neural network and logs it to a database. The number of samples are
halved each time a degrade signal is received from the REHASH. If the REHASH still sends degrade signals, AR
switches to send-class mode by taking only 4 samples and sending the classification a simple two-class classifier,
i.e. only one packet per execution. If this adaptation is still not sufficient, i.e. REHASH still sends degrade signals,
AR takes 4 samples, classifies them as moving or stationary, and sends a packet only if moving is detected
(send-event mode).

6.2 Greenhouse Monitoring (GHM)
Greenhouse monitoring (GHM) is a sense-and-send application that uses multiple sensors to approximate the
health of plants in a greenhouse; from soil moisture readings, sunlight, and temperature. During send-all mode,
GHM takes 128 samples and sends all of them. If adaptation is needed, the number of packets and samples are
halved each time until a lower threshold is reached (4 samples per execution). Degrading further, it takes 128
samples, because sensor coverage is more important in this case, takes the average, and sends only one packet
per iteration of the application (send-avg mode). After that, a packet is only sent if it is above a limit (send-event
mode). This notion of different modes of execution, that are modulated with number of samples and packets,
gives a nice flavor of adaptation that is trivial to implement with REHASH.

6.3 Digit Recognition ML Example (ML)
We consider the MNIST dataset [47] classification as a computational benchmark for understanding heuristic
adaptation. We choose MNIST because large images do not fit in a resource-constrained device’s memory. In a
real-world perfect scenario, a trained model could be ported to the MCU, that takes an image using a camera and
then classifies it in real-time. We build a toy implementation where we load the model and some images on the
microcontroller that was powered by harvested energy while evaluating REHASH, similar to [25].

We first explore different adaptation strategies on a MSP430FR5989 microcontroller when run at 16MHz. For
the purpose of this exploration only, we run the MCU on continuous power. We try changing the number of
classes recognized and observe its behavior on accuracy and time. Both accuracy and time decrease linearly
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Fig. 12. REHASH experimental setup.

when number of classes recognized are decreased as shown in Fig. 11. The is because of the uniform image
distribution in the dataset, meaning that all the digits (0 to 9) have almost equal number of images. This strategy
loses distinguishability between objects, but if the user has more confidence in some classes that can be specified
to get higher accuracy. Therefore, this adaptation strategy could be useful when some classes have a higher
probability than others. The other adaptation approach is changing the number of pixels used for classification
by cropping the image before passing it to the neural network. This strategy slowly degrades the accuracy while
decreasing the execution time at a higher rate, thus resulting in more classification in a shorter period of time.
Since the images in MNIST dataset have most of the information in the middle, this may not be a good strategy
for cases where the camera or object is in motion while the image is being captured. While both strategies are
likely better than not adapting, the choice of how to adapt greatly depends on the application needs. A visual
representation of both these strategies is shown above in Fig. 6.
We used both these strategies for evaluating REHASH. In the non-adaptive case, REHASH computes over

the whole 28 × 28 image and then classifies it as a digit (0-9). If adaptation is needed, depending on the user
preference, it may skip one row and one column from the boundary of the image at a time, and keep decreasing
until the lower threshold (14 × 14) of the image size is reached, or keep reducing / coalescing the number of
classes (i.e. digits recognized) until a threshold is reached. We refer to former strategy as skipping pixels and the
latter as reducing classes in below sections.

7 EVALUATION
We conducted an evaluation of our instantiation of the REHASH framework. The goal of the evaluation is
to understand the benefits and drawbacks of adaptation in terms of performance (defined differently by each
application), the amount of flexibility and generality of the framework, and the overhead and user experience.

7.1 Methodology
We investigate aspects of adaptation in intermittent computing by running real world applications (described
in Section 6, in diverse energy environments, and with different types of heuristic adaptation leveraging our
proposed adaptation signals (on-time, off-time, and task count). Key to our approach is that we emulate energy
harvesting environments precisely using Ekho [28, 29] and Shepherd [23], so that our experiments are repeatable.
Without realistic emulation of energy harvesting environments, experimentation would have no controls, as
devices would be executing in slightly different conditions, as an example, without Ekho and Shepherd, different
executions of the same program would have different numbers of power failures, even if the energy environment
did not seem to change. Using Ekho and Shepherd our comparisons are fair across heuristics and applications. We
compare against only the non-adaptive InK runtime as other adaptive task-based systems are rigid, e.g. [58, 59],

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 5, No. 3, Article 87. Publication date:
September 2021.



87:26 • Abu Bakar, Alexander G. Ross, Kasım Sinan Yıldırım, and Josiah Hester

and do not support the implementation of our flexible adaptation strategies for the applications mentioned in
Section 6.

Devices Used.We use Flicker [32] as our batteryless platform for experimentation, as it has support for multiple
peripherals (like an accelerometer, radio, and soil moisture sensor), has energy harvesting management circuitry,
and has sufficient compute ability to run many interesting applications. We also use a MSP430FR5994 Launch-
pad [38], with external power management circuitry, to show the portability of REHASH to other platforms.
Our Ekho emulator device acts as a energy harvester on the Flicker inputs and provides repeatable power for all
activities (Fig. 12), while Shepherd emulates the power for MSP430FR5994 Launchpad.

Energy harvesting environments.We use five IV surfaces for measuring adaptation, which offer a broad range
of different potential situations encountered in the wild. Fig. 12 shows our experimental setup for recording,
emulation and application testing. We first record IV surface, using Ekho, produced by a Powercast harvester [16]
and a 1.85in × 0.9in IXYS Solar Cell [53]. We name these IV surfaces as, (i) Fixed Low: recorded by the Powercast
harvester where transmitter was far away from the harvester, (ii) Fixed High: recorded by the solar cell when
placed near a light source in indoor environment, (iii) Moving Slow: recorded by the solar cell when the person
carrying it is walking slowly inside a building, (iv) Moving Fast: recorded by the solar cell when the person
carrying it is walking fast inside a building, (v) Random: recorded by the solar cell when the person carrying it is
moving randomly inside a building. Each of these IV surfaces may manifest in the wild; for example the moving
IV surfaces would be encountered in solar environments where sunlight increase or decreases during the day.
We attempt to increase variety and understand how different adaptation heuristics respond to changes in energy
availability.

Adaptation Performance Metrics. We compare the executions of our applications on Flicker devices with the
following metrics, (i) Total Executions/App Completions: the number of times the critical part of the task graph
of an app is successfully executed (which can span many power failures), (ii) Accuracy (MNIST): the averaged
inference accuracy, which decreases as the computation is degraded, (iii) Sensor Coverage: the percentage of time
that is covered by a sensor reading, (iv) Performance (AR/GHM): the percentage of samples (or adaptation) relative
to the 100% performance baseline. We extract the metrics using external instrumentation; a Salea logic analyzer,
Keysight Scope, and Ekho tools.

7.2 REHASH Performance
We ran each adaptive application multiple (5) times on each IV surface, comparing to the non-adaptive runtimes
InK and Alpaca [56]. We compare against former as REHASH is built on top of InK and choose latter since it is
used by many other intermittent runtimes like Celebi [41], ePerceptive [65], and Zygarde [40]. We choose InK as
our baseline for all experiments. The app completions are counted and compared. The results are shown in Fig. 13,
the higher bars mean more throughput, the green numbers in the bars note the percent increase (against InK) in
throughput, while the red numbers designate the decrease in accuracy or samples captured. We implemented
MNIST and GHM with timekeeping on for all type of executions i.e., adaptive or non-adaptive, and kept it off for
AR for all executions except for when off-time heuristic is used. This is why adaptive AR has fewer executions
than non-adaptive for the fixed IV surface—due to the timekeeping overhead.
REHASH has higher numbers of executions than both InK and Alpaca. This happens by compromising on

either accuracy, samples taken, or packets sent per execution. Figures 13a, 13b and 13c show the performance of
MNIST, GHM and AR respectively. In case of fixed low and fixed high, REHASH has no to minimal overhead.
This is because of the heuristic-based adaptation which works when energy is changing. Since adaptation is
triggered based on the previous data and has no static energy limits, with fixed energy REHASH did not adapt.
REHASH always increases app completions with all other IV surfaces. In all cases, the increase in app completions
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Fig. 13. MNIST, AR, and GHM applications performance compared to non-adaptive executions with InK and Alpaca. The
numbers in bars denote the increase in app completions (w.r.t. InK) and the number on top of the bars denote the classification
accuracy loss (MNIST), or number of samples and packets reduced (AR,GHM). As an example, from 13a, it can be concluded
that MNIST had 43% more completions with only a 6% drop in accuracy on moving slow IV surface. As a conclusion, REHASH
outperforms non-adaptive InK in dynamic energy environments with only nominal loss of accuracy and sampling.

is significant compared to the nominal decrease in accuracy, samples taken, or packets sent; at least for the
applications represented.

Also, notice that the app completions with InK are much higher than Alpaca. This could be partly because of
the different compiler used by both runtimes. Alpaca is used out of the box and is compiled using GCC while InK
is compiled using TI’s MSP430 Compiler. To minimize its effect, we keep the compiler optimizations off for both.
But the major reason for the difference between app completions is the shorter task transition times introduced
by InK. InK uses DMA (direct memory access) block copy during task commit operation upon finishing task
execution. Alpaca traverses a commit list to commit the task-modified variables one-by-one, which introduces
more overhead. Nevertheless, REHASH performs better than both runtimes.

Choice of Heuristic: Both on-time and off-time heuristics perform better than non-adaptive executions of InK
and Alpaca for all applications and for all dynamic IV surfaces. However, task-count shows different behaviour in
each application. Since MNIST is just a computational toy application and does not involve any real sensor or
camera, there is no I/O involved which results in fixed task sizes. Therefore it works better in MNIST. Whereas,
both GHM and AR are real world sensing applications and use sensor and radio module which involve I/O
operations. This results in dynamic task sizes. It is nearly impossible to profile tasks before deployment and set
task weights for a weighted task count. One task that takes 1ms at compile time, may take tens of milliseconds
when deployed in the wild. So, task-count may not be a good option for real-world sensing applications. This
insight has been overlooked in Coala [59] as used as the only heuristic for any type of application.
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Fig. 14. Heuristics are timely in triggering adaptation signals. Shown are markers representing the time when adaptation is
triggered for AR (left) and MNIST (right) applications when run on two difference IV surfaces, following the trend of max
harvestable power and adapting when is needed
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Alpaca to the sensor samples taken with InK. With InK as
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ecution of InK, but much higher than that of Alpaca since
computation and communication are degraded in favor of
sensing.

Adaptation Triggering Position. As stated earlier, the signals used by REHASH efficiently capture MPP. With
the diverse set of applications that we use in our measurement study, where I/O and high energy radio operations
are involved, heuristics may trigger adaptation at the wrong time when it is not needed. We therefore wanted
to see when adaptation is triggered in REHASH. Fig. 14 shows a test run of AR and MNIST on moving fast
and moving slow IV surfaces, respectively. While task-count heuristic does not trigger adaptation at all desired
points in AR because of it inability to capture the effect of high energy I/O operations, both on-time and off-time
heuristics accurately trigger down-adaptation when power decreases, and up-adaptation when increases for both
applications.

7.3 Sensor Coverage
The non-adaptive greedy approach of InK and Alpaca results in task starvation where samples are taken in bursts
when high energy is available. It may not be useful to send these samples as they could be expired when in
low energy mode. Throughput (or total samples collected) does not always correlate to application quality. Ten
samples all gathered within one second are not very useful, or worse are redundant and a waste to gather. Often
one sample is enough for every period of a few seconds, or minutes, or even hours depending on the application.
We use sensor coverage [75] as a measure of how spread out samples are. We look at time between two app
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in energy availability.

completions/classifications as way to measure sensor coverage. This sensor coverage metric is important for
motion event detection or continuous monitoring applications like those seen in infrastructure monitoring.
We use GHM and AR with dynamic IV surface to see the behavior of sensor coverage with our proposed

heuristics. Fig. 15 shows the time difference between two consecutive app completions (keeping in mind that
data becomes available when app is completely executed). All heuristic based adaptive executions of REHASH
show a smaller time difference. Another way to understand the notion of better sensor coverage is to look at the
number of total samples taken within a unit of time. If the number of samples are similar to the non-adaptive
case, but with more app completions, than that means better sensor coverage. Taking InK as a baseline for this
experiment, Fig. 16 shows the ratio of total samples taken with REHASH and Alpaca to InK for AR and GHM
when run on dynamic set of IV surfaces for one minute. REHASH performs better or similar in most of the cases.

7.4 REHASH Flexibility
REHASH offers programmers the flexibility to write any adaptation strategy or create any type of custom
heuristic function to trigger adaptation, beyond those built in. We approach flexibility in three different ways and
demonstrate how REHASH and its heuristics make the development process of adaptive applications much more
easier and flexible.

Adaptation Strategy. Two example adaptation strategies are previously described in Section 6. Fig. 17 shows
the performance when these strategies are used for MNIST (skip pixels, or reduce classes). In REHASH’s imple-
mentation of MNIST, it seems skipping pixels intelligently is a better option if higher overall accuracy is desired.
But if the user has more confidence in some classes then that can be specified as well so others can be skipped
when adaptation is triggered. This may increase expected accuracy.

New Signals. REHASH uses three signals: on-time, off-time, and task-count for adaptation. But many other
signals stem out of the intermittent execution of the applications. For instance, i) the number of power failures
that occur within one app execution cycle, ii) the total execution time of the application, or iii) the intermittency
rate; all are directly proportional to energy harvesting conditions. These signals are either totally new and
can be easily embedded in REHASH, or utilize other basic signals already embedded in REHASH. For instance,
the power-failure-count is a new signal that is kept in a non-volatile integer which increments at each power
failure. An app-completion-time signal can be constructed by adding both the on-time and off-time signals. A
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Fig. 19. The percentage of completions that could not meet the deadline for MNIST appliaction. This directly related to task
starvation and REHASH reduces this number of by downgrading the workload.

recovery-rate signal can be obtained by dividing off-time and on-time signals. REHASH allows the addition
of such signals without too much effort. We use these new signals and make simple heuristics as discussed in
previous sections but with slightly different parameters this time. We discuss the behavior/performance of these
heuristics below.

Custom Heuristic. REHASH also allows programmers to add any heuristic that can trigger adaptation by
either using the signals that are already embedded in REHASH or by introducing new ones. Here we use three
new signals described above and make slightly different heuristics than before to show flexibility. For the app-
completion-time signal, we make a deadline heuristic that triggers down-adaptation if a deadline is missed.
Though it is a fixed number but can be changed at runtime. For the MNIST application, the requirement is to
classify an image every 2.5 seconds. Also, we don’t want to trigger up-adaptation whenever it meets the deadline
as it will keep fluctuating between different adaptive states; we rather want to see the trend of harvested energy.
Therefore, we compare the current app completion time with the average of previous ones. Similarly, two other
heuristics: power-failure-count(PFC) and recovery-rate(RR) use the signals described above, respectively. However,
due to their volatility, we increase the history size to 4 instead of 2.

Fig. 18 shows total executions completed for MNIST when run on dynamic IV surface for one minute. Again,
the adaptive execution with REHASH results in the classification of more images than InK, with a small loss in
average accuracy. This shows that these new signals and heuristics are able to capture the changes in energy
harvesting conditions. One thing on deadline heuristic and REHASH, in general, to notice here is that they don’t
make up a real-time scheduler. There may still be deadline misses, but REHASH can surely detect them and
trigger appropriate actions. While more new heuristics can be made using available signals, or these heuristics
can be explored further for more applications; the aim here is to show the flexibility and portability of new signals
and heuristics in REHASH.

7.5 Task Starvation
Tasks in intermittent computing applications always have the risk of starvation since there could literally not
have any energy to make forward progress. But this condition can certainly be detected, and appropriate actions
can be triggered to reduce the execution time and thus task starvation. With REHASH, we provide a mechanism
to address task starvation though it cannot be eliminated. The deadline heuristic we made in 7.4 shows that we
have a flexible system. But this also shows one way to design a heuristic to focus on only task starvation. As a
deadline miss could most likely occur due to task starvation, we count the number of deadline misses against
total app completions to see how many times tasks have likely starved. Fig. 19 shows that the deadline heuristic
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non-adaptive baseline.

of REHASH reduces task starvation significantly. This simple heuristic shows how REHASH can help detect
task starvation. One could be more aggressive with adaptation strategies and degrade significantly, or radically
change the task, i.e., reading the accelerometer instead of a radio transmission.

7.6 REHASH Portability
Heuristics used in REHASH are platform independent and work well on other platforms. We show portability in
two ways. Firstly, we take REHASH as a whole (as a runtime), compile it for a different hardware (MSP430FR5994)
and tests its usefulness with two heuristics. For this purpose, we first record a different power trace, of a 1.85in
× 0.9in IXYS Solar Cell [53] again, with Shepherd this time, and then emulate it so our experiments could be
repeatable. We then port the MNIST application, which needed very little modifications, and run the skipping
pixels adaptive version against vanilla InK implementation.
Fig. 20 shows that the total executions with REHASH are significantly higher than InK with nominal loss in

accuracy. For this experiment, we only evaluate on-time and task-count heuristics because the MSP430FR5994
Launchpad does not have a persistent timekeeper, like other battery-less sensing platforms, that can be used
to keep track of off-time during power failures. While an external timekeeper or a RTC could be used to time
the power outages if off-time heuristic is needed, our goal here is to show that the heuristics, and REHASH in
general, are portable to other platforms.
Secondly, we use the heuristics library of REHASH and port it to existing intermittent runtimes SONIC and

TAILS [25] that use the MNIST application, and are built on top of Alpaca. SONIC uses a loop continuation
technique to reduce the cost of loop-heavy DNN applications and TAILS uses MSP430 hardware accelerator
to improve energy efficiency. We use three heuristics: on-time, task-count, and power-failure-count as they are
hardware agnostic, and test SONIC and TAILS with dynamic IV surfaces that are emulated by Ekho. Fig. 21 shows
the total number of classifications made on each IV surface with and without adaptation. Skipping pixels adaptation
strategy is used whenever needed; though skipping pixels could have been used instead. More classifications
with adaptive executions show the effectiveness, generality, and portability of REHASH heuristics to any other
intermittent runtime.
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Fig. 22. REHASH’s response to impulse based harvesters.

7.7 REHASH with Novel Energy Harvesting Sources
We explored how our heuristics behave when in exotic energy harvesting environments. We wanted to understand
whether our proposed heuristics can capture the change in harvested energy for harvesters beyond the ambient
(such as RF and Solar) that tend to give varying, but continuous, levels of power. To investigate a different type of
harvester, we used a slightly different approach to harvest energy. We designed a magnetic coil with permanent
magnets attached to a 3D-printed case that harvests energy when shook by hand or human body movements. We
attached this to the hand and connected Shepherd with it to record the harvested energy while running. Fig. 22a
shows the harvested power while running. We then emulate this data in the lab to study the behavior of our
heuristics. Since this harvester generates energy with body movements, we consider AR (implemented on Flicker)
as the most suitable application to run our tests on.
Fig. 22b shows that the total executions with REHASH are a bit higher than InK but at the loss of a large

number of sensor samples. We notice that the on-time heuristic is not able to efficiently capture the trend of
harvested energy. This is because a coil harvester generates energy in the form of bursts at around 4Hz (frequency
varies with running speed). These burst slowly charge the capacitor until it reaches a level where Flicker can
start running AR application. The capacitor on Flicker depletes in a few milliseconds, while the energy bursts
come once every 240 to 260 milliseconds (Fig. 22a). This burst is too slow to renew the capacitor charge during
execution, and therefore will not change the active time of the device. This may keep the on-time constant across
many power failures, resulting in no adaptation. On the other hand, the off-time heuristic performs better since it
works during inactive period and does not have anything to do with energy bursts. It efficiently keeps the record
of inactive period and trigger adaptation when needed.

We therefore conclude that on-time works best for harvesters that provide continuous power and off-time may
work best for all kind of harvesters, such as those that are impulse or burst based. The behavior of task-count
is somewhat random in applications that perform I/O operations, so it can not be easily generalized. While
these conclusions need more investigation with other harvesters, our purpose is here is to show that REHASH
framework can work with multiple energy harvesters. And in some cases, if proposed heuristics cannot capture
the changes in energy, REHASH is flexible enough to let developers integrate their own software or hardware
signals and heuristics.
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Table 3. Memory consumption (in B) for applications in InK
and REHASH.

InK REHASH
.text .data .text .data

AR 7882 5662 14216 5708
GHM 5658 5262 11624 5308
MNIST 11412 37272 14010 37318

Table 4. Initialization overhead (in ms) for applications in
InK and REHASH.

InK REHASH
non-adaptive on-time off-time task-count

AR 1.61 4.21 4.07 4.19
GHM 1.65 4.24 4.08 4.19
MNIST 1.64 4.24 4.10 4.22

Table 5. Minimum capacitor size (in µF) required for InK
and REHASH.

InK REHASH
non-adaptive on-time off-time task-count

AR 1.07 2.70 2.62 2.69
GHM 1.05 2.72 2.64 2.71
MNIST 1.06 2.72 2.62 2.69

Table 6. Lines of code (LOC) for applications in InK and
REHASH.

InK REHASH
adaptUp() adaptDown()

AR 1664 1727(+3.8%) 15 15
GHM 1273 1343(+6.8%) 19 19
MNIST 677 723(+5.5%) 8 8

7.8 Microbenchmarks and User Experience

Memory Overhead. Shown in Table 3. The memory overhead of making applications adaptive is small, as most
of the logic is contained within the kernel.

Initialization Overhead. Shown in Table 4. The initialization overhead of REHASH’s adaptive applications is
2.5× of non-adaptive InK. Our empirical observation shows that the initialization overhead of this magnitude is
tolerable and does not affect intermittently powered applications badly.

Capacitor Size. Since the initialization overhead of REHASH is higher than InK, it needs a bigger minimum-size
capacitor to store the energy required to execute the overhead code. We use the time overhead (𝑡𝑜 ) information
from Table 4, calculate corresponding energy overhead (𝐸𝑜 ), and then use upper and lower threshold operating
voltages (𝑉𝑜𝑛 and 𝑉𝑜 𝑓 𝑓 ) of Flicker to find the minimum size of the capacitor using equations below.

1
2
𝐶𝑉 2

𝑜𝑛 −
1
2
𝐶𝑉 2

𝑜 𝑓 𝑓
= 𝐸𝑜

As,
𝐸𝑜 = 𝐼𝑉𝑐𝑐𝑡𝑜

Equating above two equations

𝐶 = 2
𝐼𝑉𝑐𝑐

(𝑉 2
𝑜𝑛 −𝐶𝑉 2

𝑜 𝑓 𝑓
)
𝑡𝑜 (3)

Table 5 shows the minimum capacitor size of REHASH which is almost same for every heuristic. Typically,
intermittent computing platforms use a capacitor of value greater than tens or hundreds of microfarads. So a
2.7µF capacitor requirement for REHASH is almost negligible. Other than this, there are no known components
of REHASH that can be affected by capacitor size; only the largest task in an application determines the minimum
capacitor size.

Energy Overhead. We calculated the energy harvested by non-adaptive and adaptive application variants from
the supply voltage and current draw, and found negligible differences, meaning adaptation was not a burden over
typical non-adaptive runtimes. Further, the higher app completion rates and sensor coverage suggest adaptation
used the energy more wisely.
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Fig. 23. REHASH-explorer with and without adaptation for a run of MNIST application on different IV surfaces. Adaptive
runs result in more app completions. Different configurations of REHASH-explorer show different trends, narrowing the
design space, that developer can use to write heuristics for the hardware.

Running REHASH-explorer We look at the trend of predictions made by REHASH-explorer. Absolute
accuracy (i.e., the exact number of joules of energy spent or app completions compared to the hardware) is not
a useful metric for REHASH-explorer. The reason is that our simulation model does not capture the minute
hardware differences between platforms. It also does not account for large amounts of bypass capacitance and
diverse energy management circuitry found on some platforms in intermittent computing. We posit that the
trend or behavior with different heuristics/configurations is helpful for developers. They want to see, when
history size or 𝜖 value is changed on the interface, or a different step size is selected, is the proportional change
reflected or not. To conduct this evaluation we look at multiple configurations of our MNIST application and
note the trend in the statistics reported by REHASH-explorer. The results are shown in Fig. 23. As shown, the
predicted app completions of REHASH-explorer follow the same trend when compared to the actual tests run
on the hardware (see Fig. 13a and Fig. 18)

User Experience.While we did not conduct a formal user study, REHASH only adds a few additional semantics to
enable heuristic adaptation. Since the runtime hides the actual heuristic function, and the gathering of adaptation
signals, the programmer need only to concern themselves with making tasks able to handle varying sizes of
samples. In total, the lines of code added beyond a vanilla InK application to make them adaptive using REHASH,
are as shown in Table 6. Almost half of the lines added are for the __ADAPT_UP and __ADAPT_DOWN routines that
control the adaptive variables. The rest of the lines are distributed across the tasks that user wants to adapt. This
represents a small amount of effort compared to the development of the actual application. But puts power in the
hands of the developers to ensure adaptation is done right, instead of relying on invisible degradation policies as
in other runtime systems like CatNap, Celebi, and COALA.

7.9 Summary of Findings
As shown, heuristic adaptation with REHASH provides a structured way to make applications energy-aware.
Using our implementation, the three diverse applications we built have higher throughput (more app completions
/ executions / classifications) and higher sensor coverage, at the cost of nominal drops in accuracy or performance.
The heuristics we develop closely track the maximum energy in an environment, providing a good estimation of
scarcity/abundance. REHASH is low overhead, and only requires a small amount of code to make non-adaptive
tasks adaptive.
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8 RELATED WORK
The system proposed represent a general framework for energy-aware adaptation for energy harvesting devices;
instantiated for intermittently powered battery-free devices. Much of the related work was discussed in Section 2,
of note however, are other adaptive runtime systems and real time schedulers, and other tools like REHASH-
explorer that give insight into program operation pre-deployment.

8.1 Energy Management
Prior work on energy management for battery-powered energy-harvesting sensing systems like LT-ENO [10], and
ENO-MAX [77] offer strategies for energy utilization in order to avoid battery depletion or waste of energy, but
they do not react to the changing energy conditions. Eon [75], maximizes the quality of service under available
energy constraints by choosing the program flow that is marked by the programmer for the given energy state.
PreAct [24] offers better energy management for these systems via adapting the duty cycle of the application
considering the variations of the energy in the long-term from weeks to months.

8.2 Scheduling and Adaptation in Intermittent Computing
Adaptation in general computing systems has been explored at length under many different names. The ideas of
"imprecise computing" for real time systems [52] discussed trading accuracy for performance. Similarly the idea
of "Approximate computing" has been heavily explored in high performance systems for the last two decades [64].
Intermittent computing builds on these ideas, but takes the cost of failure to the extreme, and represents the most
constrained computing systems in terms of memory and power. More recent intermittent computing runtimes
have grappled with adaptation in application specific ways, or looked at a single mechanism of adaptation.
Dewdrop [11] adapts the task execution to best match task energy requirements to available energy, by

scheduling when to start the next task iteration. Coala [59] aims to reduce the overhead of saving tasks’ state in
non-volatile memory, by grouping tasks adaptively based on the estimated energy availability and postponing
their commit operations. Both Dewdrop and Coala do not play with the energy demands (sizes) of the tasks. This
makes their response to changing energy dynamics limited since they cannot degrade the quality of computation.
Camaroptera [67] demonstrates the execution of different versions of the same application, by selecting the
best match based on the charging rate of the device. However, the granularity of the adaptation is limited by
the versions provided by the programmer. Similar to Dewdrop and Coala, Camaroptera cannot fine-tune the
sizes of the tasks in these versions. Quite similar to the objectives of Dewdrop, Celebi [41] studies the real-time
scheduling problem for intermittent systems by taking into account the time, energy demands of the fixed-size
tasks and harvested energy in order to increase the number of jobs that meet the deadline. Similar to Celebi,
CatNap [58] focuses on meeting the schedules of the time critical events on intermittent systems. On the contrary
to Celebi, CatNap degrades the application quality in a rigid manner upon a decrease in the environmental energy
in order to meet the deadlines of the time critical events. The main design principle is to separate the energy
required to service the events from the energy that will be used for the tasks. Inference specific runtimes, like
ePerceptive [65] and Zygarde [40] use off time and hardware voltage measurements, respectively, as a trigger for
exiting early from the execution of an inference task. Zygarde attempts to schedule tasks, in a mechanism similar
to Dewdrop, so that failures are less likely.

For all scheduling and energy management approaches, the mechanisms of adaptation, the when and how, are
either rigid or unexplored. REHASH for the first time formalizes a general purpose and flexible framework for
adaptation in intermittent computing. REHASH is a super set of these previous adaptive approaches, pulling
together the various implicit signals, heuristics, and knobs used by other work, and it in a principled approach to
adaptation for programmers.
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8.3 Programmer Tools for Energy Introspection
Power and energy consumption of mobile computing systems has long been an important benchmark. Industry
tools for understanding energy consumption like Apple’s Instruments and Texas Instrument’s EnergyTrace++
enable a coarse look at a specific application. Tools developed by the wireless sensor networks community like like
Power TOSSIM [71], and Cooja/MSPSIM [20] provide instruction level insight into power, without the need for
actual hardware. More recently, energy harvesting based simulation platforms have arisen, including SIREN [22],
GreenCastalia [7] , and Fused [74]. These simulate the operation of the microcontroller under dynamic energy
harvesting conditions at a low level, including power failures. These tools could assist in understanding adaptation,
but are too low level (often simulating at the instruction level) to provide fast feedback on the performance of a
particular adaptation strategy.

Other tools, more closely related to REHASH-explorer, are focused at design time or deployment time. EPIC is
a compile-time energy analysis tool which takes the assembly instructions for transiently powered computers [2].
EPIC can accurately predict the energy of an arbitrary intermittent program considering variations in power
consumption and clock speed. EPIC is complementary to REHASH-explorer, and could be integrated for more
accurate power projections from selected REHASH-explorer configurations. PowerForecaster [63] help users
make decisions about energy efficiency at install time to understand battery lifetime. PADA [62] gives an enriched
simulation for developers on their power draw for phone based apps. The Amulet ARP-view [26] provides a
parametric simulation at compile time that derives battery lifetime impact of programmer code changes. These
tools are not focused on intermittent computing systems, and do not have a notion of energy harvesting, or
adaptation. REHASH-explorer is unique in its targeted application domain, and it’s ability to explore different
configurations of an adaptive intermittent application.

9 DISCUSSION AND FUTURE WORK
This paper began with the idea that adaptation at the application (task) level could be beneficial to sensing
programs embedded for ultra long periods in a changing environment. The devices that best exemplify and
motivate this type of ultra long deployments do not have batteries, so we focused on their constraints. Other
methods of adaptation, for example purely focused on forward progress by checkpointing less in non-task based
languages, do not consider the application level constraints and information that could be applied to bring more
performant and data rich applications to the space. This section discusses the limitations of the study and system,
as well as potential future work.

9.1 Limitations
Heuristic adaptation is only one approach to adaptation, that focuses on the execution statistics to guess about
energy availability in the future. Heuristics are rules of thumb that can be confounded in some instances. For
example, extremely random energy harvesting environments may disadvantage approaches that try to adapt, as
the history and statistics will be much more noisy. Other situations where the energy environment is just too
low to support any operation, or the energy is so high that adaptation is unnecessary, may also disadvantage
heuristic adaptation methods. This work attempts to generalize across a range of energy environments and a few
applications, but does not cover all confounding situations.

Comprehensiveness:We did not investigate other types of adaptation signals like number of uncompleted tasks,
or the relative energy cost / size of a task. Profiling energy costs of tasks would be difficult, but could lead to fruitful
and more precise adaptation decisions. We also left unstudied more complex heuristics that integrate more than
just the average of past history. EWMA based adaptation or other more complex statistical estimation techniques
could be used, potentially at much higher compute cost. Additionally, the output of heuristic functions could be
increased from 1-bit, to provide a more continuous output which would allow more fine-grained adaptation. That
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said, due to the flexibility of REHASH and REHASH-explorer, a developer could create many of these heuristics
themselves.

Heuristics vs. Machine Learning: Many of the knobs and signals could be imagined as a machine learning
process; where features are constructed from these adaptation signals and proper weights per feature are given
using a neural network. In this case, we prefer a heuristic to reduce training per-application, which may be
difficult or impossible for intermittent nodes. Moreover, we appreciate the simplicity and explainability of a
heuristic; simplicity enables quick decisions with limited resources, while explainability may enable programmers
to choose a heuristic more easily for their application, instead of training a neural network.

Simulation Limitations: REHASH-explorer is limited by the user inputs it is supplied, and if they are accurate
(i.e. energy of tasks). We found that the absolute accuracy of REHASH-explorer compared to real hardware was
not exact, however, the behavior of change matched well. REHASH-explorer is not meant to model perfectly
the hardware, but is instead meant for comparison of configurations within an application. This is the role of
most simulation platforms that handle a large and diverse set of hardware possibilities. We happily trade off
absolute accuracy (not as useful for the developer anyway for design) for speed and lower user burden to explore
many configurations of adaptation in a short time.

Continuing Efforts and Community: The REHASH framework provides a scaffold for adaptive computing
that is complemented by REHASH-explorer so that developers can take advantage of the flexibility of the
framework, but understand the cost/benefit of their design decisions. REHASH-explorer is a research tool still
under development, and is not fully integrated and automated (for example, energy profiling is not yet automatic).
Likely other aspects of the tool and usage of the framework could be more seamless, and we expect that by
releasing this to the community free and open source, we can partner with others to improve the integration and
friendliness of the platform, and enable future research.

9.2 Future Work
A number of follow-on ideas come from the exploration and implementation of heuristic adaptation presented in
this paper.

Capacitor Voltage as Signal: Another potential signal for adaptation could be the voltage on the capacitor.
Some previous work has used this signal as the time when a checkpoint of the entire volatile RAM should be
stored to NV memory [5]. This signal is useful for just-in-time checkpointing, but further study would be required
to ascertain usefulness as an adaptation signal, since the capacitor voltage is highly variable and a high voltage
does not mean a high energy trace (because of IV curve behavior of energy harvesters). Voltage is not a great
signal because the amount of power being harvested depends on the behavior of the load.

Language Constructs:We extended the programming model of the state of the art task based programming
language for intermittent computing, InK, however much more intricate constructs could be imagined. For
example, our measurement study explored how heuristic adaptation could enable choosing different paths in
the task graph, not just based on priority or events, as in InK, but based on the heuristic estimate of the energy
availability of the environment. Implementing language constructs to support this and more are interesting
directions for future work.

Energy-Neutral Systems and Generality: We focused in this paper on exploring heuristic adaptation for
tiny, batteryless, energy harvesting systems—which can lose power many times a second, and have volatile
power supplies and energy harvesting. However, the tools and techniques could potentially be applied to other
larger classes of sensing systems that deal with less frequent, or longer- term interruptions, such as energy-
neutral sensing systems [61]. These sensors have more computation power, larger energy harvesters, and rarely
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experience power failures. However, the task completion and on-time statistics could be used to make longer
term adaptation decisions to account for seasonal changes in energy availability. Mapping new heuristics to
new device classes would be the first step towards a general system; for example a heuristic signal from speed
of capacitor depletion / emergency reserve access on Permamote [42], or the metered energy harvested with
SignPost [1].

Profiling Tasks. If we had perfect, oracle-like knowledge of the task energy costs at each level of adaptation, and
the knowledge of future energy harvesting, we could leverage algorithms like LT-ENO [10], and ENO-MAX [77]
to provide an optimal quality of service of the application with respect to the energy availability. As mentioned
previously, it is extremely hard to predict future energy due to the diversity of energy harvesting environments.
Even if it might be possible to have a coarse-grained prediction of for some deployments, the energy profiling
of tasks is also extremely hard. Pre-computing the task energy costs is not feasible due to the start up and tear
down costs, peripheral usage, randomization and input dynamics. There might be non-deterministic tasks whose
energy consumption might vary from execution to execution. [11]. Moreover, the objective of adaptation is to
scale tasks with respect to the energy availability by degrading their quality. This requires profiling each scale of
the task [13], where the number of states we have to measure per each task scale can be intractable.

10 CONCLUSIONS
Intermittently powered, energy harvesting computers and sensing devices have great potential for revolutionizing
sensor networks and the Internet-of-Things. This paper has explored the challenges of developing robust energy
aware adaptation for batteryless sensors. By adapting to the energy environment via down-sampling, task-
skipping, pixel/class-skipping (explored in this paper) more consistent and reliable data delivery can be realized.
We aim to give developers flexibility to account for the broad range of applications, hardware, and energy
harvesting scenarios that could be encountered. However, flexibility is a double edged sword, as developers suffer
from analysis paralysis and decision fatigue. So our contribution is two part. First, we conceptualized the REHASH
framework for energy-aware, heuristic adaptation, and developed an instantiation for intermittent computing.
This general framework gives developers complete freedom to build their own adaptation strategy for task based
programs. We made heuristic functions from easily gathered signals and explored heuristic adaptation over three
applications in multiple energy harvesting scenarios. Second, we develop a formalization and online simulation
tool that helps users understand the tradeoffs between different adaptation strategies and configurations of their
application. This developer focused approach reduces the cognitive decision burden. We found that heuristic
adaptation can be highly useful for sensing and machine learning applications. Adaptive MNIST performs up to
46% more classifications with only a 5% drop in performance or accuracy for MNIST application. Adaptive GHM
gives up to 154% more useful data by keeping the number of samples and packets small in low energy mode, but
maintaining the same number of samples in a time window compared to non-adaptive. Adaptive AR had 76%
more useful data compared to non-adaptive AR, with reduction of 30% samples per execution on average, but
takes overall more samples in a time window. Heuristic adaptation, with toolchain support seems a promising
route towards large scale, zero-maintenance, long term deployments of useful sensing devices.
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